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In order to overcome some difficulties observed in the computation of hyper-
sonic flows, a robust, accurate and efficient numerical scheme based on AUSM-type
splitting is developed. Typical symptoms appearing in the application of AUSM-
type schemes for high-speed flows, such as pressure wiggles near a wall and over-
shoots across a strong shock, are cured by introducing weighting functions based
on pressure (AUSMPW). A newly improved version of the AUSMPW scheme,
called AUSMPW+, is developed to increase the accuracy and computational effi-
ciency of AUSMPW in capturing an oblique shock without compromising robust-
ness. With a new definition of the numerical speed of sound at a cell interface,
capturing an oblique shock is remarkably enhanced, and it can be proved that an
unphysical expansion shock is completely excluded. With simple Mach number in-
terpolation functions, AUSMPW+ is efficient to implement. Extensive numerical
tests from supersonic frozen flows to hypersonic nonequilibrium flows validate that
the AUSMPW+ scheme provides accurate solutions for the computation of high-
speed flows. c© 2001 Elsevier Science
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1. INTRODUCTION

With the practical need for efficient hypersonic vehicle design, there has been contin-
uous research to unveil the physics of hypersonic flows experimentally or numerically.
It is believed that a full-scale hypersonic vehicle will be developed in the early 21st
century. At a pace with this research, much effort has been put into the analysis of hy-
personic flows using CFD. Methods developed for the analysis of subsonic or supersonic
flows have been extended to hypersonic flow. Up to now, however, these methods do not
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seem to provide satisfactory results compared with those of subsonic or supersonic flows.
This is mainly due to the characteristics of high-enthalpy flows involving complex gas
reactions.

High-enthalpy flows commonly involve complex physical phenomena including chemical
reactions, ionization, vibration of molecules, and radiation. Thus the proper modeling of
high-enthalpy flows is essential for an accurate numerical simulation. Although mechanisms
of many chemical reactions are well understood, it is still difficult to predict accurate
distributions of chemical species in flows involving strong interactions between vibrations
and chemical reactions. Turbulence phenomena at high pressure and temperature, involving
several molecular species, are not well known either. Turbulence combined with spalled
particles produced by abrasion from the surface of a hypersonic vehicle makes flow analysis
extremely difficult [1].

Aside from problems of physical modeling, the issue of proper numerical modeling poses
challenges, especially for the treatment of errors related to spatial discretization and grid
distribution, which is the focus of the present work.

A spatial discretization method should maintain a high level of accuracy, robustness, and
efficiency to be applied to hypersonic flows. Hypersonic flow problems generally include
severe viscous dissipation in a boundary layer and strong shock waves leading to the large
gradient of flow properties. For the accurate calculation of stiff gradient regions, numeri-
cal dissipation has to be minimized. Insufficient numerical dissipation, however, induces
numerical instability while excessive numerical dissipation easily contaminates physical
dissipation. Once unphysical oscillations appear in hypersonic flows, they directly influ-
ence the robustness, accuracy, and efficiency of a solver. Numerical instability generally
increases in proportion to the local Mach number, and as a result, negative density, pressure,
and/or energy are easily produced. Spatial accuracy can deteriorate since it cannot locally
be better than the first order to avoid unphysical oscillations due to the monotonicity con-
straint. Grid systems for hypersonic flow are commonly required to be denser than those
for subsonic or supersonic flow to calculate stiff gradient regions accurately, which limits
the time step due to the CFL condition and takes requires additional computational time
for a solution to converge. Moreover, the source term from chemical reactions poses an
additional barrier to efficient computation.

Although several schemes have been developed to cope with these difficulties and have
been applied to various hypersonic flow problems, their performances still seem to be un-
satisfactory. Today, upwind-biased schemes are the main trend of spatial discretization,
which may be categorized as either FVS (flux vector splitting) or FDS (flux difference
splitting). FVS, such as Steger–Warming’s [2] or Van Leer’s [3], has advantages in view
of robustness and efficiency. It can be proved that these types of FVS schemes are posi-
tively conservative under a CFL-like condition [4], which is very desirable for simulating
high-speed flows involving strong shocks and expansions. However, it is also well known
that these schemes have accuracy problems in resolving shear layer regions due to exces-
sive numerical dissipation, which occurs more seriously in hypersonic flow. Much effort
has spent on developing improved FVS-type schemes for high-speed flows, and they have
shown reasonable enhancement in accuracy. In contrast, FDS, which exploits the solution
of the local Riemann problem, usually provides accurate solutions. Roe’s FDS [5] has a
matrix that becomes zero at a sonic transition point and a contact discontinuity. Thus it is
able to capture a shock and resolve the shear layer region very accurately. Unfortunately,
it has several robustness problems such as the violation of the entropy condition, failure of
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local linearization, and appearance of carbuncles [6]. Those defects become more serious in
hypersonic flow than in subsonic or supersonic flow. Although an entropy fix may enhance
the robustness, a large amount of entropy fix is usually required in hypersonic flow, which
requires extra numerical dissipation. This also may cause a decrease of the total enthalpy
behind a shock wave and the inaccurate estimation of the surface heating rate. Determining
the optimal amount of entropy fix without compromising accuracy is difficult and depends
highly on the user’s experience. Some variants of Roe’s FDS such as Harten–Lax–van Leer’s
(HLLE) [7] increase the robustness of Roe’s FDS at the expense of accuracy. Therefore,
contemporary concern is shifted toward combining the accuracy of FDS and the robustness
of FVS.

In an effort to design a numerical scheme to meet this concern, the AUSM (advection
upstream splitting method) [8] was proposed by Liou and Steffen. In AUSM a cell-interface
advection Mach number is appropriately defined to determine upwind extrapolation for con-
vective quantities. As a result, AUSM is accurate enough to resolve a shear layer, and it is
simple and robust. Thus AUSM possesses the merits suitable for the analysis of hypersonic
flows. However, the characteristic of advection in AUSM may induce the oscillations of
flow properties. Successively updated AUSM-type schemes such as AUSMD/V [9] and
AUSM+ [10] did not overcome the problem perfectly. AUSMD/V eliminates numerical
oscillations or overshoots behind shock waves, though not completely, but may exhibit
carbuncle phenomena. AUSM+ eliminates carbuncle phenomena but still shows numerical
overshoots behind strong shock waves and oscillations near the region of small convection
velocity or pressure gradient, such as near a wall or around a stagnation point. It was ob-
served that oscillations of AUSM-type schemes could be cured by introducing weighting
functions based on pressure, leading to the development of AUSMPW (AUSM by pressure-
based weight functions) [11, 12]. AUSMPW was found to possess many desirable features
such as no carbuncle phenomena, elimination of overshoots, accurate numerical dissipa-
tion, and preservation of the total enthalpy. Depending on the particular version, LDFSS
(low diffusion flux-splitting schemes) proposed by Edwards did not show oscillations near
a strong shock or carbuncle phenomena. But the two problems do not seem to be cured
simultaneously [13].

In the present paper, a remedy for the issue related to the accurate discretization for
computations of hypersonic flows is proposed by developing a new spatial discretization
scheme, named AUSMPW+. AUSMPW+ is designed to increase the accuracy and effi-
ciency of its predecessors by introducing a new numerical speed of sound and by sim-
plifying AUSMPW. AUSMPW+ has higher resolutions in capturing oblique shocks than
any other AUSM-type scheme and eliminates the unphysical expansion shocks observed
in AUSM+, AUSMPW, or Roe’s FDS. Furthermore, the AUSMPW+ scheme is more effi-
cient to implement than AUSMPW while maintaining the same level of the robustness and
accuracy.

The present paper is organized as follows. A brief description on the governing equations
of a calorically perfect gas and equilibrium and nonequilibrium gases is given in Section 2.
In Sections 3 and 4, AUSMPW+ is introduced and the characteristics of the scheme are
analyzed in detail. In Section 5, the temporal discretization adopted is briefly explained.
Numerous test cases from frozen flows to nonequilibrium flows are presented to verify
the properties of AUSMPW+ in Section 6. Finally, conclusions based on the results of the
previous sections are drawn in Section 7.
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2. GOVERNING EQUATIONS

The two-dimensional Navier–Stokes equations in a conservation form can be expressed
as

∂Q
∂t
+ ∂E
∂x
+ ∂F
∂y
=
(
∂Ev

∂x
+ ∂Fv

∂y

)
+ S, (1)

where the flow and flux vectors are

Q=


ρ

ρu
ρv

ρet

, E =


ρu

ρu2+ p
ρuv

(ρet + p)u

 , F =


ρv

ρvu

ρv2+ p

(ρet + p)v

,
(2)

Ev =


0
τxx

τxy

ev

, Fv =


0
τxy

τyy

fv

,
with ev = uτxx + vτxy− qx, fv = uτxy+ vτyy− qy. S represents the source term for ther-
mochemical phenomena. Depending on the treatment of the reaction effect of air molecules,
three types of gas can be considered.

For a calorically perfect gas that does not include the effect of vibration or chemical
reaction, the equation of state is given by

p = (γ − 1)ρe= (γ − 1)ρ

(
et − 1

2
(u2+ v2)

)
, (3)

with γ = 1.4 for air.
For an equilibrium gas where the characteristic time scale of reaction is much shorter

than that of fluid, the equation of state has the same form as Eq. (3) with variable specific
heat ratio ˜γ :

p = (γ̃ − 1)ρe= (γ̃ − 1)ρ

(
et − 1

2
(u2+ v2)

)
. (4)

γ̃ in Eq. (4) is the function of two thermodynamic variables. Thermodynamic variables and
transport coefficients are calculated using the curve-fitted data in Refs. [14, 15].

For a nonequilibrium gas, all the species and vibrational energy equations must be in-
cluded to describe the reaction process, and the equation of state is

p =
∑

s

ρs
R

Ms
T, (5)

whereR is the universal gas constant (8.314 kJ/kg·mol · K) andMs is the molecular weight
of each species in the nonequilibrium gas. In order to calculate nonequilibrium effects, five
species of chemical reaction models are used in the temperature range of 2500< T < 9000 K

O2+ M ↔ O+O+ M,

N2+ M ↔ N+ N+ M,
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NO+ M ↔ N+O+ M, (6)

O+ NO↔ N+O2,

O+ N2↔ N+ NO,

whereM can be any one of the five possible collision partners. Considering the species
continuity and vibrational energy equations, the flow and flux vectors of Eq. (2) become

Q=



ρ

ρu
ρv

ρet

ρ1

ρ2

ρ3

ρevib,3

ρevib,4

ρevib,5


, E =



ρu

ρu2+ p
ρuv

(ρet + p)u
ρ1u
ρ2u
ρ3u

ρevib,3u
ρevib,4u
ρevib,5u


, F =



ρv

ρuv

ρv2+ p

(ρet + p)v
ρ1v

ρ2v

ρ3v

ρevib,3v

ρevib,4v

ρevib,5v



,

S=



0
0
0
0
ẇ1

ẇ2

ẇ3

ρėvib,3+ ẇ3evib,3

ρėvib,4+ ẇ4evib,4

ρėvib,5+ ẇ5evib,5



, Ev =



0
τxx

τxy

ev
ρD1

∂c1
∂x

ρD2
∂c2
∂x

ρD3
∂c3
∂x

ρevib,3D3
∂c3
∂x + κvib,3

∂Tvib,3

∂x

ρevib,4D4
∂c4
∂x + κvib,4

∂Tvib,4

∂x

ρevib,5D5
∂c5
∂x + κvib,5

∂Tvib,5

∂x



,

Fv =



0
τxy

τyy

fv

ρD1
∂c1
∂y

ρD2
∂c2
∂y

ρD3
∂c3
∂y

ρevib,3D3
∂c3
∂y + κvib,3

∂Tvib,3

∂y

ρevib,4D4
∂c4
∂y + κvib,4

∂Tvib,4

∂y

ρevib,5D5
∂c5
∂y + κvib,5

∂Tvib,5

∂y



. (7)
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S is the source term that includeṡwi in the species continuity equations and(ρėvib,i+
ẇi evib,i ) in the vibrational energy equations of each species. As shown in Eq. (7), the
four-temperature model is adopted to test the robustness of AUSMPW+ in nonequilibrium
problems involving highly dissociated flow and low density of diatomic molecules. Reaction
rate constants and transport coefficients are calculated according to Refs. [16, 17].

3. SPATIAL DISCRETIZATION

3.1. Proposed Scheme: AUSMPW+

In AUSM-type schemes, an advection Mach number at a cell interface is defined to
determine an upwind extrapolation for convective quantities. Although the usage of the
advection Mach number yields a notable improvement in accuracy, it may also induce
spurious oscillatory phenomena. AUSM+, for example, shows oscillations near a wall and
across a shock. The numerical flux of AUSM+ at a cell interface is given by

F 1
2 ,AUSM+ =

(
M+L
∣∣
β= 1

8
+ M−R

∣∣
β= 1

8

)
c1

2
ΦL +

(
P+L
∣∣
α= 3

16
PL + P−R

∣∣
α= 3

16
PR
)
, (8)

if m1/2 = M+L + M−R > 0.Φ = (ρ, ρu, ρH)T , andP= (0, p, 0)T . The subscripts 1/2 and
(L , R) stand for a quantity at a cell interface and at the left and right states across a
cell interface, respectively. The split Mach number and pressure of AUSM+ across a cell
interface are given by

M±|β =
± 1

4(M ± 1)2± β(M2− 1)2, |M | ≤ 1,

1
2(M ± |M |), |M | > 1,

(9)

P±|α =
(

1
4(M ± 1)2(2∓ M)± αM(M2− 1)2, |M | ≤ 1,

1
2(1± sign(M)), |M | > 1.

(10)

The Mach number of each side is defined as

ML ,R = UL ,R

c1
2

, c1
2
= min(c̃L , c̃R), (11)

wherec̃ = c∗
2
/[max(|U |, c∗)] and the critical speed of soundc∗ is given by√

2(γ − 1)

(γ + 1)
H

from the isoenergetic condition.H is the total enthalpy andU is the velocity component
normal to a cell interface.

As can be seen from Eq. (8), AUSM+ considers the one-side convection quantityΦL

only according to the sign of a cell-interface Mach number
(
m1/2

)
. This is thought to

yield oscillations because considering the one-side quantity only is unsuitable for the flow
physics in subsonic regions. Other phenomena that are frequently seen in AUSM-type
schemes are oscillations across a shock. Although the reflection of only a one-side quantity
produces some disadvantages as mentioned above, it is also useful in the sense that AUSM-
type schemes with an advection Mach number can capture a stationary shock or contact
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discontinuity through one cell interface. Thus it is intended to carefully control the advection
property of AUSM+ by employing both-side quantities to remove oscillatory phenomena
while maintaining the original advantages of AUSM+ in accuracy, efficiency, and robustness.
In these respects, the AUSMPW+ scheme is designed to control the advection property by
introducing pressure-based weighting functionsf andw only in the problematic regions
such as a shock or a boundary layer. The improvement of AUSMPW+ consists of three parts.
The first is the introduction of a new definition of the numerical speed of sound for high
resolution in capturing an oblique shock. The second is the elimination of the physically
unacceptable expansion shock which is observed in AUSM+, AUSMPW+, or Roe’s FDS.
The last is to simplify AUSMPW to enhance computational efficiency. For the purpose of
clear presentation, AUSMPW is briefly introduced.

3.1.1. AUSMPW (AUSM by Pressure-Based Weight Function)

The main feature of AUSMPW is the removal of the oscillations of AUSM+ [10] near a
wall or across a strong shock by introducing pressure-based weight functions. AUSMPW
uses the pressure-based weight functionf to treat the oscillations near a wall andw to
remove the oscillation across a strong shock. The starting point of AUSMPW is to observe
the fact that AUSM+ and AUSMD [9] are complementary to each other. AUSM+ has no
carbuncle phenomena but shows numerical oscillations near a wall while AUSMD has no
numerical oscillations near a wall but shows carbuncle phenomena. This difference can be
seen by examining the mass fluxes of AUSM+ and AUSMD,

ρu 1
2 ,AUSM+ = M+L c1

2
ρL + M−Rc1

2
ρL , m1

2
≥ 0, (12)

ρu 1
2 ,AUSMD= M+L c1

2
ρL + M−Rc1

2
ρR, ρm1

2
≥ 0, (13)

wherem1/2 = M+L + M−R andρm1/2 = ρL M+L + ρRM−R .
From Eqs. (12) and (13), it can be noticed that AUSM+ considers the left cell density only

while AUSMD takes both cell densities. This is thought to be the reason for the numerical
oscillations of AUSM+ and carbuncle phenomena of AUSMD. In order to summon AUSM+
and AUSMD, the density ratio is multiplied by the second term of Eq. (12) as follows:

ρu 1
2 ,AUSMPW= M+L c1

2
ρL + M−Rc1

2
ρL

(
ρR

ρL

)
. (14)

With the equation of state applied to the speed of sound, the density is given by

ρ = γ p

c2
. (15)

If the values of the specific heat ratio and the speed of sound are chosen at a cell interface,
Eq. (14) becomes

ρu 1
2 ,AUSMPW= M+L c1

2
ρL + M−Rc1

2
ρL

γs
pR

c2
s

γs
pL

c2
s

, (16)

ρu 1
2 ,AUSMPW= M+L c1

2
ρL + pR

pL
M−Rc1

2
ρL . (17)
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By introducing pR/pL , AUSMPW considers the right cell propertypR, which prevents
the numerical oscillations near a wall. For symmetric representation, Eq. (17) is modified
as [11]

ρu 1
2 ,AUSMPW=

pL

ps
M+L c1

2
ρL + pR

ps
M−Rc1

2
ρL , (18)

or

ρu 1
2 ,AUSMPW=

(
M+L c1

2
ρL +M−Rc1

2
ρL
)

AUSM+
+
(

pL

ps
− 1

)
M+L c1

2
ρL +

(
pR

ps
− 1

)
M−Rc1

2
ρL

= (M+L c1
2
ρL + M−Rc1

2
ρL
)

AUSM+
+ fL M+L c1

2
ρL + fRM−Rc1

2
ρL , (19)

where

fL ,R =


pL ,R

ps
− 1, |ML ,R| < 1, ps 6= 0

0, elsewhere

and

ps = P+L
∣∣
α= 3

16
pL + P−R

∣∣
α= 3

16
pR.

Equation (19) takes the same form as AUSM+ in the supersonic region (fL ,R = 0). The
choice forps prevents the unwanted interference offL ,R across a shock wave and maintains
the symmetric and continuous transition ofps as the Mach number goes to zero asymp-
totically. Although the modified flux of Eq. (19) does not show an oscillatory behavior
near a wall, it may have a problem in accuracy, particularly in boundary layers and shock
regions due to the increase offL M+L + fRM−R . For example, when the Mach number in-
creases form zero to one,M+L does not become zero as can be seen from Eq. (9). Thus
fL M+L remains active inside a boundary layer or in shock regions and provides extra nu-
merical dissipation. As another side effect, it has the potential to induce shock instability
causing carbuncle phenomena since Eq. (19) possesses the numerical dissipation term in
proportion to the pressure difference [18]. These problems were cured by carefully limiting
fL ,R to

fL ,R=


( pL ,R

ps
−1
)
pl(pL ,R, pR,L)|M±L ,R|β=0|×min

(
1,
(
| EVL ,R|

c1
2

)0.25)
, |ML ,R| ≤1,

0, |ML ,R|> 1,

(20)

where

pl(x, y) =
4 ·min

(
x
y ,

y
x

)− 3, 3
4 ≤ min

(
x
y ,

y
x

)
< 1,

0, 0≤ min
(

x
y ,

y
x

)
< 3

4.

Second, the numerical oscillations near a shock wave or the region of a stiff gradient
have to be examined. AUSM+, which considers the one-side property according to the
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sign of a cell-interface Mach number, may yield excessive or insufficient numerical fluxes,
especially in a non-shock-aligned grid system. This produces oscillations of flow properties.
In AUSMPW, both properties across a cell interface are considered through another pressure-
based weight functionw,

ρu 1
2 ,AUSMPW= (1+ fL)M

+
L

∣∣
β= 1

8
c1

2
ρL + (1+ fR)M

−
R

∣∣
β= 1

8
c1

2
((1−w) · ρL +w · ρR), (21)

where

w(pL , pR) = 1−min

(
pL

pR
,

pR

pL

)3

.

From the form ofw, it can be noticed that the value ofw becomes very small except in the
region of a shock discontinuity.

In summary, the numerical flux of AUSMPW is written as

F 1
2
= M̄+L c1

2
ΦL + M̄−Rc1

2
ΦR+

(
P+L
∣∣
α= 3

16
PL + P−R

∣∣
α= 3

16
PR
)
, (22)

where

(i) for m1/2 ≥ 0

M̄+L = M+L
∣∣
β= 1

8
+ M−R

∣∣
β= 1

8
− M−R

∣∣
β= 1

8
× w · (1+ fR)+

(
fL M+L

∣∣
β= 1

8
+ fRM−R

∣∣
β= 1

8

)
,

M̄−R = M−R
∣∣
β= 1

8
× w · (1+ fR),

(ii) for m1/2 < 0

M̄+L = M+L
∣∣
β= 1

8
× w · (1+ fL),

M̄−R = M+L
∣∣
β= 1

8
+ M−R

∣∣
β= 1

8
− M+L

∣∣
β= 1

8
× w · (1+ fL)+

(
fL M+L

∣∣
β= 1

8
+ fRM−R

∣∣
β= 1

8

)
,

with Φ = (ρ, ρu, ρH)T , and P= (0, p, 0)T . The split Mach number and pressure of
AUSMPW at a cell interface are the same as those of AUSM+ in Eqs. (9) and (10). The
Mach number on each side of a cell interface is also defined as in Eq. (11).

3.1.2. AUSMPW+: An Improved Version of AUSMPW

In the previous section, it was mentioned thatfL M+L |β=1/8+ fRM−R |β=1/8 of Eq. (22) was
designed to remove oscillations near a wall andM−R |β=1/8× w · (1+ fR) or M+L |β=1/8×
w · (1+ fL) was designed to exclude overshoots or oscillations behind strong shocks. In
order to maintain the same accuracy level as AUSM+ or Roe’s FDS and to reduce shock
instability that induces carbuncle phenomena,pl(pL , pR)× |M±L ,R|β=0| ×min(1, ( EVL ,R/

c1/2)
0.25), which acts like a limiter of the functionfL ,R, is multiplied to control the mag-

nitude of fL M+L + fRM−R . Without this additional limiting term, the numerical dissipation
term, fL M+L + fRM−R , may become much larger, particularly in hypersonic boundary layer,
due to the noticeable difference betweenM+L andM−R , which directly influences sensitive
aerodynamic coefficients such as the surface heat transfer coefficient. It also gives an ad-
verse effect on accuracy in capturing shock waves becausefL M+L + fRM−R has almost the
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FIG. 1. Pressure distribution around a cell interface.

same order of magnitude as other dissipation terms. The termM±L ,R|β=0 is designed to scale
down the order of magnitude offL ,R, and min(1, (| EVL ,R|/c1/2)

0.25) makes fL ,R vanish in
the stagnation region. The functionpl(pL , pR) is designed such thatfL ,R becomes zero in
large pressure gradient regions.

Although AUSMPW has the merits, it contains a complicating functionfL ,R, which
entails extra computational costs. In AUSMPW+,fL ,R is modified by considering accuracy,
shock instability, and efficiency.

To maintain accuracy in resolving the shear layer and capturing the shock wave, the
following approximation is introduced:

M+L ∼= −M−R , M → 0. (23)

Then, fL M+L + fRM−R becomes( fR− fL)M
−
R whenm1/2≥ 0, and it decreases in proportion

to the Mach number. This obviates the usage ofpl(pL , pR)× |M±L ,R|β=0| × min(1, (EVL ,R/

c1/2)
0.25) in fL ,R without introducing excessive numerical dissipation. To remove carbuncle

phenomena, however, it is necessary that the functionf becomes zero in the region of a
strong moving shock. In AUSMPW+, this is achieved by multiplying the term that considers
pressures in the transverse direction as shown in Fig. 1. As a result, AUSMPW+ can be
summarized as

F 1
2
= M̄+L c1

2
ΦL + M̄−Rc1

2
ΦR+

(
P+L
∣∣
α= 3

16
PL + P−R

∣∣
α= 3

16
PR
)
, (24)

where

(i) for m1/2 ≥ 0

M̄+L = M+L + M−R · [(1− w) · (1+ fR)− fL ] ,

M̄−R = M−R · w · (1+ fR) ,

(ii) for m1/2 < 0

M̄+L = M+L · w · (1+ fL) ,

M̄−R = M−R + M+L · [(1− w) · (1+ fL)+ fL − fR)] ,
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with

w(pL , pR) = 1−min

(
pL

pR
,

pR

pL

)3

. (25)

And fL ,R is simplified to

fL ,R =

( pL ,R

ps
− 1
)

min
(
1, min(p1,L ,p1,R,p2,L ,p2,R)

min(pL ,pR)

)2
, ps 6= 0,

0, elsewhere,
(26)

whereps = P+L pL + P−R pR.

As shown in Eq. (25) the functionw goes as the cube of the pressure ratio and has a
very small value except at a large pressure gradient region such as a shock. The value of
fL ,R also becomes very small except at the region where oscillation exists. As a result,
AUSMPW+ has the same form as AUSM+ except at a shock or oscillatory region. The
accuracy, robustness, efficiency, and convergence characteristics of AUSMPW+ will be
examined in detail in Section 4 and 6.

The Mach number and pressure splitting functions of AUSMPW+ at a cell interface are
also simplified to

M± =
(± 1

4(M ± 1)2, |M | ≤ 1,

1
2(M ± |M |), |M | > 1,

(27)

P±|α =
( 1

4(M ± 1)2(2∓ M)± αM(M2− 1)2, |M | ≤ 1,

1
2(1± sign(M)), |M | > 1,

(28)

whereα ranges from 0 to 3/16. Whenα = 0 AUSMPW+ is more robust in view of stability
since the pressure splitting function is a little more diffusive.

The Mach number on each side is similarly defined as follows:

ML ,R = UL ,R

c1
2

. (29)

However, the choice of the speed of sound (c1/2) of AUSMPW+ is quite different.

3.1.3. Numerical Speed of Sound for AUSMPW+

In AUSM-type schemes, the choice of the numerical speed of sound is crucial since it
is closely related to the resolution of physical discontinuities. Using a cell-interface sound
speed, Liou suggested the Mach number on each cell side in AUSM+ as in Eq. (11) [10].
Although AUSMPW with the sound speed of Eq. (11) is able to capture a stationary normal
shock through one cell interface [11, 12], an oblique shock is smeared over about four cell
interfaces in a nonaligned grid system. Even with nearly shock-aligned grids, an oblique
shock cannot be captured in one cell interface. Moreover, AUSMPW with the speed of sound
based on Eq. (11) cannot distinguish an unphysical expansion shock from a compression
shock, thus admitting an entropy-violating solution like AUSM+ or Roe’s FDS.
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FIG. 2. Schematic of an oblique shock.

In order to improve the capability of capturing an oblique shock and to remove an unphys-
ical expansion shock, the following numerical speed of sound is designed for AUSMPW+.
First, the speed of sound is defined according to flow directions to pick out an entropy-
decreasing expansion shock. Second, to capture a stationary oblique shock exactly through
one cell interface in a shock-aligned grid system, the total enthalpy excluding the tangential
velocity component along an oblique shock is used in defining the speed of sound.

Although an oblique shock cannot be captured through one cell interface in case of
non-shock-aligned grids, numerical dissipation decreases in proportion to the amount of
the tangential velocity component excluded. Thus an oblique shock can be captured more
accurately with the present formulation of the speed of sound:

(i)
1

2
(UL +UR) > 0: c1

2
= c2

s

/
max(|UL |, cs),

(30)

(ii)
1

2
(UL +UR) < 0: c1

2
= c2

s

/
max(|UR|, cs).

From the conservation laws normal to an oblique shock and the equation of state for a
calorically perfect gas, the speed of sound normal to a cell interface,cs, is given by

cs =
√

2(γ − 1) / (γ + 1) Hnormal, (31)

whereHnormal= 0.5× (Htotal,L − 0.5× V2
L + Htotal,R− 0.5× V2

R) (see Fig. 2). Then, we
can see thatcs satisfies the Prandtl relation across an oblique shock just like the critical
speed of sound (c∗) across a normal shock,

UL

cs
× UR

cs
= 1. (32)

The speed of sound for reacting gases will be discussed in Section 4.7.

3.2. Higher Order Interpolation

Upwind schemes have in general first-order spatial accuracy. For better accuracy, a
MUSCL (monotone upstream-centered schemes for conservation laws) approach using
primitive variables is adopted to interpolate higher order left and right states across a cell
interface. To monitor the local gradient of a solution and control spatial order, we use
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minmod limiter

WL =Wi + 1

4
[(1− κ)∇̄ + (1+ κ)1̄] i , WR = Wi+1− 1

4
[(1− κ)∇̄ + (1+ κ)1̄] i+1,

1̄i = min mod[(Wi+1−Wi ), β(Wi −Wi−1)],
(33)

∇̄i = min mod[(Wi −Wi−1), β(Wi+1−Wi )],

min mod(x, y) = sign(x)max[0,min(xsign(y), ysign(x))], 1≤ β ≤ (3− κ)
(1− κ) ,

whereW = (ρ, u, v, p)T . This formulation can produce third-order spatial accuracy ifκ is
equal to 1/3.

4. CHARACTERISTICS OF AUSMPW+

In this section, the numerical properties of the AUSMPW+ scheme are analyzed from
the viewpoint of the accuracy, robustness, and efficiency.

4.1. Accuracy

Since AUSMPW+ is based on AUSMPW, it exhibits the same accuracy as AUSMPW.
Additionally AUSMPW+ increases accuracy in capturing an oblique shock due to the newly
proposed speed of sound and less diffusive Mach number and pressure splitting functions.
In order to investigate properties of AUSMPW+, we adopt the flux form which shows the
numerical dissipation term explicitly,

F 1
2
= 1

2
[(ULΦL +URΦR)+ (PL + PR)] + D, (34)

whereD stands for numerical dissipation.

4.1.1. Stationary Oblique Shock Discontinuity

The speed of sound used in AUSMPW+ is designed such that the corresponding char-
acteristic Mach number satisfies the Prandtl relation, Eq. (32), across a stationary oblique
shock in a shock-aligned grid system. Assuming a cell interface is aligned with a shock as
in Fig. 2, the Mach number of AUSMPW+ across a stationary oblique shock is given by

ML = UL

c1
2

= UL(
c2

s

/
UL
) = (UL

cs

)2

,

(35)

MR = UR

c1
2

= UR(
c2

s

/
UL
) = (UL

cs

)(
UR

cs

)
= 1,

whenUL >UR. Then, the flux of AUSMPW+ becomes

F 1
2
= M̄+L c1

2
ΦL + M̄−Rc1

2
ΦR+ (P+L PL + P−R PR) = ULΦL + pL En, (36)

if m1/2 ≥ 0. In this case,Φ = (ρ, ρu, ρv, ρH)T .
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Here,

M̄+L = M+L + M−R × ((1− w) · (1+ fR)− fL) = UL

c1
2

,

M̄−R = M−R × w · (1+ fR) = 0.

Now, if we apply the oblique shock relations,

1© ρLUL = ρRUR, 2© ρLU2
L + pL = ρRU2

R+ pR,

3© VL = VR, 4© HL = HR,

5© u = sinθ ·U + cosθ · V, 6© v = −cosθ ·U + sinθ · V,
(37)

the numerical dissipation of AUSMPW+ becomes

D|1 = −1

2
(ρRUR− ρLUL) = 0,

D|2 = −1

2
(ρRuRUR− ρLuLUL + (pR− pL) · sinθ)

= −1

2
((ρRURUR− ρLULUL + pR− pL) · sinθ + (ρRVRUR− ρL VLUL) · cosθ)

= 0,
(38)

D|3 = −1

2
(ρRvRUR− ρLvLUL + (pR− pL) · (− cosθ))

= −1

2
((ρRURUR− ρLULUL + pR− pL) · (− cosθ)+ (ρRVRUR− ρL VLUL) · sinθ)

= 0,

D|4 = −1

2
ρLUL(HR− HL) = 0.

Thus all AUSMPW+ dissipation terms become zero. This means that AUSMPW+ can
capture a stationary oblique shock without numerical diffusion in a shock-aligned grid
system. It is important to note that the dissipation terms of AUSMPW+ do not contain the
pressure-based weight functionsf andw. This implies thatf andw are active in removing
oscillations only in a non-shock-aligned grid system and that the resolution of a shock
discontinuity is independent off andw in a shock-aligned grid system. Also note that
AUSMPW+ with various forms off andw, such as the vector form off andw, can yield
a more appropriate form of numerical dissipation.

4.1.2. Stationary Contact Discontinuity

In the region whereM → 0, the dissipation terms of AUSMPW+ become

D|1,2,3 = 0, (39)

when pL = pR.
Thus AUSMPW+, similar to AUSMPW and AUSM+, can calculate a stationary contact

discontinuity exactly and does not have any extra dissipation. Moreover, AUSMPW+ may
give more accurate solutions in a boundary layer, expansion, and shock regions because the
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interpolation function in Eqs. (27) and (28) adopted in AUSMPW+ is less diffusive than
those in AUSM+ and AUSMPW.

4.1.3. Expansion Shock

The numerical dissipation of Roe’s FDS, AUSM+, and AUSMPW across a normal shock
can be expressed as follows:

Roe’s FDS :

D|1 = −1

2
(ρRUR− ρLUL),

D|2 = −1

2

(
ρRU2

R− ρLU2
L + pR− pL

)
, (40)

D|3 = −1

2

ULUR

(γ − 1)

(
ρRU2

R− ρLU2
L + pR− pL

)
.

AUSM+, AUSMPW:

D|1 = −1

2
(ρRUR− ρLUL),

D|2 = −1

2

(
ρRU2

R− ρLU2
L + pR− pL

)
, (41)

D|3 = −1

2
ρLUL(HR− HL).

AUSMPW+:

for ML > 1> MR > 0 (compression shock)

D|1 = −1

2
(ρRUR− ρLUL),

D|2 = −1

2

(
ρRU2

R− ρLU2
L + pR− pL

)
, (42)

D|3 = −1

2
ρLUL(HR− HL);

for 0< ML < 1< MR (expansion shock)

D|1 = −1

2
(ρRUR− ρLUL)+ (M+L − ML)c1

2
ρL ,

D|2 = −1

2

(
ρRU2

R− ρLU2
L + pR− pL

)+ (M+L − ML)c1
2
ρLUL + (P+L − 1)pL , (43)

D|3 = −1

2
(ρRURHR− ρLUL HL)+ (M+L − ML)c1

2
ρL HL .

Equations (40) and (41) express a stationary normal shock relation. Thus the numeri-
cal dissipation becomes zero across a shock discontinuity, which means that Roe’s FDS,
AUSM+, and AUSMPW schemes can capture a stationary normal shock without numerical
dissipation. However, the numerical dissipation terms shown in Eqs. (40) and (41) do not
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have a built-in mechanism to distinguish a compression shock from an unphysical expan-
sion shock. For AUSMPW+, the speed of sound which considers flow directions as shown
in Eq. (30) distinguishes a compression shock from an expansion shock. Equations (42)
and (43) show the numerical dissipation in each case. Under unphysical expansion shock
condition, the numerical dissipation of AUSMPW+ does not become zero due to the addi-
tional terms in Eq. (43). From the physical point of view, AUSMPW or Roe’s FDS allow an
expansion shock solution since they violate the entropy condition. In contrast, AUSMPW+
never allows this situation, which is proved in the following.

Two solutions can be considered that satisfy the inviscid governing equations across a
shock discontinuity. In case ofuL , uR > 0,

ML > 1> MR > 0, if pR > pL (compression shock),

0< ML < 1< MR, if pL > pR (expansion shock).
(44)

The entropy variation across a shock discontinuity are given as

1s = sR−sL = cp ln

(
TR

TL

)
− R ln

(
pR

pL

)
= cp ln

[
1+ 2γ

γ + 1

(
M2

L − 1
)][2+(γ − 1)M2

L

(γ + 1)M2
L

]
− R ln

[
1+ 2γ

γ +1

(
M2

L − 1
)]
. (45)

Then, the entropy variation of Eq. (45) exhibits

1s> 0, if ML > 1 (compression shock),

1s= 0, if ML = 1 (expansion fan, acoustic waves),

1s< 0, if ML < 1 (expansion shock).

(46)

Thus it is easily known from Eq. (44) to Eq. (46) that the entropy variation is positive for a
compression shock and negative for an expansion shock. Also, the Prandtl relation

uL

c∗
× uR

c∗
= M∗L M∗R = 1, (47)

wherec∗ = √2(γ − 1) / (γ + 1) HL or R is the critical speed of sound, is satisfied.
From Eqs. (44) and (47), it can be shown that the following properties exist across a

shock discontinuity:

M∗ > 1⇒ M > 1,

M∗ = 1⇒ M = 1, (48)

M∗ < 1⇒ M < 1.

For an expansion shock, the left and right side of Mach numbers across the shock discon-
tinuity satisfy the condition 0< M∗L < 1< M∗R, and the following result can be obtained.

THEOREM (ENTROPY CONDITION OF AUSMPW+). With the numerical speed of sound
defined at a cell interface, Eq. (30), the numerical flux function of AUSMPW+ scheme,

Eq. (24), recognizes an expansion shock and excludes it by the action of the numerical
dissipation, Eq.(43).
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FIG. 3. Fluxes across cell interfaces around an expansion shock discontinuity.

For the initial condition as in Fig. 3, the time evolution of the expansion shock is examined
by using AUSMPW and AUSMPW+ schemes.

For AUSMPW, the speed of sound at a cell interface is given as

cL = c∗, cR = c∗2

|uR| =
c∗

M∗R
,

(49)

c1
2
= min(cL , cR) = c∗2

|uR| .

And the left and right side Mach numbers are

ML = uL |uR|
c∗2

= M∗L M∗R = 1, MR = uR|uR|
c∗2

= M∗2R > 1. (50)

Then, the flux vector at each cell interface becomes

F = M+L c1
2
ΦL + M−Rc1

2
ΦR+ P+L PL + P−R PR. (51)

From Eq. (51) and the consistency of AUSMPW,

F I = uLΦL + PL ,

FII = uLΦL + PL , (52)

FIII = uRΦR+ PR.

SinceuLΦL + PL is equal touRΦR+ PR across the expansion shock, the conservative
vector does not change during the time evolution:

Qn+1
L = Qn

L − (FII − F I ) = Qn
L ,

Qn+1
R = Qn

R− (FIII − FII ) = Qn
R, (53)

1sn+1 = 1sn < 0.

Thus the entropy variation keeps its initial value and the expansion shock maintains its
initial state. A similar result can be obtained for AUSM, AUSM+, and Roe’s FDS.

On the other hand, the speed of sound of AUSMPW+ at a cell interface is given as

cL = c∗, cR = c∗2

|uR| =
c∗

M∗R
,

(54)
c1

2
= cL = c∗.
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The left and right side Mach numbers can then be expressed as

ML = uL

c∗
= M∗L < 1, MR = uR

c∗
= M∗R > 1. (55)

Thus, the flux vector at each cell interface is given by

F = M+L c1
2
ΦL + M−Rc1

2
ΦR+ P+L PL + P−R PR, (56)

and the flux vectors in Fig. 3 are

F I = uLΦL + PL ,

FII = M+L c∗ΦL + P+L PL , (57)

FIII = uRΦR+ PR.

The conservative vector att +1t may be expressed explicitly as

Qn+1
L = Qn

L −1t (FII − F I )n

= Qn
L +1t [(ML − M+L )c

∗ΦL + (1− P+L )PL ]n

= Qn
L +1t

[
−1

4

(
uL

c∗
− 1

)2

c∗ΦL + 1

4

(
uL

c∗
− 1

)2(
2+ uL

c∗

)
PL

]n

, (58)

and each component ofQ at t +1t is

Qn+1
1 = (1+ C1)Q

n
1, (59)

Qn+1
2 =

(
1+ C1+ C2 pn

L

Qn
2

)
Qn

2, (60)

Qn+1
3 = (Qn

3 + C1Qn
3 + C1 pn

L

) = (1+ C1+ C1 pn
L

Qn
3

)
Qn

3. (61)

Here,C1 = − 1
4(M

n
L − 1)2c∗1t is negative andC2 = 1

4(M
n
L − 1)2(2+ Mn

L)1t is positive
under the expansion shock condition of Eq. (55).

Now, for the initial values of positive mass(Qn
1), momentum(Qn

2), energy(Qn
3), and

pressure(pn), one must find a time step,1t , which guarantees positive values of(Q, p) at
t +1t . From Eqs. (59)–(61) andC1, C2, it can be observed that

• Qn+1
1 is positive for

0< 1t1 <
4(

Mn
L − 1

)2
c∗
,

• Qn+1
2 is always positive,

• Qn+1
3 is positive for

0< 1t2 < 2
4(

Mn
L − 1

)2
c∗
(

1+ pn
L

Qn
3

) . (62)
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After some algebra, it also can be seen for pressure att +1t that

pn+1
L = (γ − 1)

(
Qn+1

3 − 0.5

(
Qn+1

2

)2

Qn+1
1

)

= (γ − 1)

[
(1+ C1)

(γ − 1)
pn

L + C1 pn
L − C2

Qn
2

Qn
1

pn
L − 0.5

C2
2

(
pn

L

)2

(1+ C1) Qn
1

]

> (γ − 1)

[
(1+ C1)

(γ − 1)
pn

L + C1 pn
L − C2

Qn
2

Qn
1

pn
L − 0.5

C2
2 Qn

3 pn
L

(1+ C1) Qn
1

(1+ C1)

−C1

]
(63)

= (γ − 1) pn
L

[
(1+ C1)

(γ − 1)
+ C1− C2

Qn
2

Qn
1
− 0.5

C2
2

−C1

Qn
3

Qn
1

]
.

Thus, as a sufficient condition to guarantee positive pressure att +1t it is required that[
(1+C1)

(γ − 1)
+ C1− C2

Qn
2

Qn
1
− 0.5

C2
2

−C1

Qn
3

Qn
1

]

= 1

(γ − 1)
− 1

4

(
Mn

L − 1
)2

[
γ

(γ − 1)
c∗ + un

L

(
2+Mn

L

)+ 0.5en
t,L

(
2+ Mn

L

)2

c∗

]
1t > 0.

Since the term

1

4

(
Mn

L − 1
)2

[
γ

(γ − 1)
c∗ + un

L

(
2+ Mn

L

)+ 0.5en
t,L

(
2+ Mn

L

)2

c∗

]
1t

is always positive, one obtains

0< 1t3 <
1

(γ − 1) 1
4

(
Mn

L − 1
)2
[

γ

(γ−1)c
∗ + un

L

(
2+ Mn

L

)+ 0.5en
t,L
(2+Mn

L)
2

c∗

]
1t
. (64)

Therefore, the time step1t for positive values of (Qn+1, pn+1) is given by

0< 1t < min{1t1,1t2,1t3}. (65)

Now, the velocity and total energy variation can be obtained from Eqs. (59)–(61), and
Eq. (56) as

un+1
L − un

L =
1t
[

1
4

( uL

c∗ − 1
)2(

2+ uL

c∗
)

pL
]n

ρn+1
L

> 0, (66)

en+1
t,L − en

t,L =
−1t

[
1
4

( uL

c∗ − 1
)2

c∗pL
]n

ρn+1
L

< 0. (67)

Notice that the velocity in front of the expansion shock increases as the time step evolves
while the total energy decreases. Thus, the Mach number on the left side increases since

Mn+1
L = uL√

(γ − 1)
(
et,L − 0.5u2

L

)
∣∣∣∣∣
n+1

, (68)
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and the entropy variation across the expansion shock is gradually decreased from Eq. (46),

1sn < 1sn+1 < 0. (69)

From Eqs. (55) and (68), we have a monotonically increasing bounded sequence{Mn
L}, and

it should converge to 1. Otherwise, there exists a positive numberδ such that 1− δ is a limit
of {Mn

L}. Then, from Eqs. (47) and (55),ML = 1− δ andMR = 1/(1− δ), which produces
Mn

L greater than 1− δ through the process of Eqs. (54)–(68). This is a contradiction to the
fact that 1− δ is a limit of the monotonically increasing sequence{Mn

L}. As a result, we
haveML = MR = 1, which means that the initial expansion shock profile is eliminated as
time step evolves by the action of the numerical dissipation, Eq. (43).

Numerical results for the entropy condition of AUSMPW+ will be presented in
Section 6.1.4.

4.1.4. Effect of the Speed of Sound to Numerical Dissipation

AUSM-type schemes are influenced considerably by the choice of the speed of sound
at a cell interface. Capability of a shock capturing capability is critically dependent on the
choice of the speed of sound. Form1/2 > 0, the numerical dissipation of convective terms
in AUSMPW+ can be expressed as the function ofc1/2 as

D = −1

2
(ULΦL +URΦR)+ M̄+L c1

2
ΦL + M̄−Rc1

2
ΦR. (70)

(i) For ML > 1 andMR > 1(M+L = UL/c1/2 andM−R = 0)

D = −1

2
(URΦR−ULΦL). (71)

(ii) For ML > 1 and 0< MR < 1 (M+L = UL/c1/2 andM−R = −0.25(MR− 1)2)

D = −1

2
(URΦR−ULΦL)− 1

4

(
UR− c1

2

)2 Φ R

c1
2

. (72)

(iii) For 0 < ML < 1 and 0< MR < 1 (M+L = 0.25(ML + 1)2 and M−R = −0.25
(MR− 1)2)

D = −1

2
(ULΦL +URΦR)− 1

4

(
UR− c1

2

)2 Φ R

c1
2

+ 1

4

(
UL + c1

2

)2 ΦL

c1
2

. (73)

As shown in Eq. (71), the numerical dissipation in supersonic regions is not affected by
the choice of the speed of sound. In the transition regions from supersonic to subsonic as
in Eq. (72), the numerical dissipation term increases as the speed of sound increases. In
subsonic regions as in Eq. (73), it increases as the speed of sound increases in expansion
regions(ML <MR), and it decreases in compression regions(ML >MR). Since the newly
defined speed of sound based on Eq. (30) is always smaller than that of Eq. (11), it may
provide more accurate numerical dissipation to capture a shock discontinuity. From the
results of test cases presented in Section 6, it is noted that the actual improvement is
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significant when the angle difference between a cell interface and a shock discontinuity is
small, though its effect may be reduced in case of a large angle difference.

In the boundary layer region, improvement is hardly noticeable since the portion of the
numerical dissipation enhanced by the proper choice of the speed of sound is very small
compared to the order of the whole numerical dissipation.

4.2. Mechanism to Remove Numerical Oscillations

The fluxes of AUSM+ and AUSMPW+ at a cell interface are

F 1
2 ,AUSM+ =

(
M+L
∣∣
β= 1

8
+ M−R

∣∣
β= 1

8

)
c1

2
ΦL +

(
P+L
∣∣
α= 3

16
PL + P−R

∣∣
α= 3

16
PR
)
, (74)

F 1
2 ,AUSMPW+= (M+L + M−R × ((1− w) · (1+ fR)− fL))c1

2
ΦL

+ (M−R × w · (1+ fR))c1
2
ΦR+ (P+L PL + P−R PR), (75)

if m1/2 ≥ 0. As mentioned earlier, the advection property of AUSM+ yields the oscillations
near a wall and behind a shock in non-shock-aligned grids. It can be seen from Eqs. (74)
and (75) that AUSMPW+ is the scheme that controls the advection property by the function
f andw without compromising the accuracy of AUSM+. Numerically, AUSM+ chooses
ΦL only, while AUSMPW+ considersΦL andΦR properly via f andw. In a boundary
layer close to a wall, AUSMPW+ incorporates the effect ofΦR implicitly through function
fR.

The mechanism to remove oscillations can be explained quantitatively as follows: Near a
wall, whereML ,R→ 0,w→ 0, M+L → 1/4, M−R →−1/4, andΦL = ΦR, the numerical
dissipation values of AUSM+ and AUSMPW+ become

D 1
2 ,AUSM+ = 0,

(76)
D 1

2 ,AUSMPW+= −
1

4
( fR− fL)c1

2
ΦL
∼= −1

4

(pR− pL)

ps
c1

2
ΦL .

Since the Mach number approaches zero asymptotically in this region, the numerical dis-
sipation becomes zero for AUSM+ while it remains− 1

4(
PR−PL

PS
)c1/2ΦL for AUSMPW+.

Thus pressure oscillations are damped out untilpL equalspR in AUSMPW+. Additional
dissipation due tofL ,R does not affect the accuracy sincefL ,R becomes zero once oscilla-
tions are eliminated. A similar mechanism can be seen in Roe’s FDS and AUSMD where
pressure wiggles do not appear. However, Roe’s FDS and AUSMD exhibit carbuncle phe-
nomena because of the numerical dissipation term proportional to the pressure difference
[18]. AUSMPW+ also has the possibility of instability due to this term. In AUSMPW+, the
numerical dissipation due to pressure difference is carefully controlled to eliminate pressure
wiggles without carbuncle phenomena, which is explained in detail in the next section.

In the region of shock waves wherew→ 1, AUSMPW+ explicitly considersΦL and
ΦR with the same order of magnitude to remove oscillations. In the supersonic region,
the advection property of AUSM+ is compatible with the physical phenomena dominated
by the hyperbolic governing equations. In order to fully exploit this property, however,
grid generation should reflect the position of physical discontinuities such as a shock-
aligned grid system. Under these conditions, an accurate solution such as a shock without
an intermediate cell can be captured. Otherwise the advection property of AUSM+ produces
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excessive or insufficient convective velocity, and as a result, AUSM+ shows oscillations.
On the other hand, AUSMPW+ not only maintains the advection property in a shock-
aligned grid system but also removes oscillations in case of non-shock-aligned grids due
to M−Rw(1+ fR)c1/2ΦR of Eq. (75). It is essentially the same mechanism asM−RcRΦR in
Van Leer’s FVS.

4.3. Preservation of the Total Enthalpy

In hypersonic flows, heat transfer at a wall is one of the primary quantities to be pre-
dicted accurately. If a numerical scheme does not guarantee the preservation of the total
enthalpy, surface heating rate may be underpredicted since it is very sensitive to the total
enthalpy. AUSMPW+, like AUSMPW and AUSM+, is designed to preserve the total en-
thalpy in steady flows. From the mass conservation, AUSMPW+ satisfies the constancy of
the total enthalpy in steady flows because the energy flux of AUSMPW+ can be written
as

f ±3 = f ±1 H, (77)

where f1 is the mass flux.

4.4. Consistency

To solve the given governing equations correctly, the numerical scheme satisfies the fol-
lowing condition. As1t and1x approaches zero, properties of both cells are equal, and the
numerical flux vector should converge to the physical flux vector of the original governing
equations. If1t, 1x→ 0, thenΦL = ΦR andPL = PR. Thus the pressure ratio of both
cells are equal to unity, which givesfL ,R = 0 andw = 0. Then, the split flux vector of
AUSMPW+ converges to the physical flux vector as follows:

F 1
2
= M̄+L c1

2
ΦL + M̄−Rc1

2
ΦR+ (P+L PL + P−R PR)

= (M+L + M−R )c1
2
ΦL ,R+ (P+L + P−R )PL ,R (78)

= UΦ+ P.

4.5. Efficiency

Similar to AUSMPW or AUSM+, AUSMPW+ is based on the form of a scalar dis-
sipation. In addition, thanks to the simplified form off and interpolation functions,
AUSMPW+ is more efficient than AUSMPW, which is useful in the computation of nonequi-
librium gas or three-dimensional flows. Table I shows the computational efficiency for a
calorically perfect gas. The difference between AUSMPW+ and AUSM+ is shown to be
negligible.

TABLE I

Comparison of Computational Time

Scheme AUSMPW+ AUSMPW AUSM+ Roe’s FDS

Time/timeAUSMPW+ 1.0 1.03 0.99 1.14
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4.6. Robustness and Shock Instability

In hypersonic flow computations involving strong shocks and high expansion regions,
a robust numerical scheme is particularly desirable. In this respect, the FVS approach
is advantageous since some schemes of FVS are conservatively positive under a CFL-
like condition [4]. For AUSM+, only the positivity condition for the mass continuity is
satisfied [10]. Since AUSMPW+ has almost the same form as AUSM+, except for the
region of oscillations, it satisfies the mass positivity condition, but the complete positivity
condition for AUSMPW+ has not yet been fully examined. However, various test cases
in Section 6 indicate that AUSMPW+ shows a better robustness than AUSM+ in most
hypersonic problems.

In Ref. [18], it is conjectured that if the numerical dissipation term involving pressure
difference is not zero in the mass flux, a scheme may show even–odd decoupling and
carbuncle phenomena. From this point of view, it is possible that AUSMPW+ may exhibit
even–odd decoupling and carbuncle phenomena since AUSMPW+ possesses the numerical
dissipation term formed by the pressure difference.

In AUSMPW+, the numerical dissipation of mass flux is given by

D1 = −1

2

[
(MR− 2M̄−R)c1

2
ρR+ (ML − 2M̄−L )c1

2
ρL
]

= −1

2

[
(M+R − M−R )c1

2
ρR+ (M−L − M+L )c1

2
ρL
]

+M−Rw(1+ fR)c1
2
(ρR− ρL)+ M−R ( fR− fL)c1

2
ρL , (79)

whenm1/2 > 0, and the term involving the pressure difference is

D(p)
1 = M−R

(
pR− pL

ps

)
c1

2
ρL

if f = (p/ps − 1). Figure 4 shows the situation that induces even–odd decoupling and
carbuncle phenomena. For large convection velocity,D(p)

1 is insufficient to induce instability.
For small convection velocity such as in theη-direction, however, it becomes enough to
trigger the instability.

FIG. 4. Pressure distribution around a moving shock discontinuity.
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By some external disturbances such as a grid disturbance, the instability byD(p)
1 magnifies

as shock strength increases. In order to remove this problem actively, it is necessary that
the order of magnitude ofD(p)

1 should be scaled down to the level where the instability is
easily damped out by numerical dissipation. This is achieved by augmenting the term that
considers transversal pressure ratio tof as

fL ,R =
(

pL ,R

ps
− 1

)
min

(
1,

min(p1,L , p1,R, p2,L , p2,R)

min(pL , pR)

)2

. (80)

Extensive numerical tests indicate that Eq. (80) is sufficient to suppress even–odd decoupling
and carbuncle phenomena.

4.7. Extension to Reacting Gases

Like AUSM+, AUSMPW+ defines an advection Mach number and the speed of sound at a
cell interface with which convective fluxes are determined. Thus AUSMPW+ can be easily
extended to reacting gases. This requires the addition of species densities or vibrational
energies of molecules to the flow vector

Φ = (ρ, ρu, ρH, ρ1, ρ2,, . . . , ρs, ρ1evib,1, . . . , ρsevib,s)
T . (81)

For equilibrium and nonequilibrium gases, the speed of sound should take into account
the effect of the species variation due to chemical reactions. Thusc2 = γ p/ρ is not valid
and is given by a variable specific heat ratio such asc2 = γ̃ (γ̃ − 1)e= γ̃ p/ρ. From the
conservation laws and equation of state, the speed of sound satisfying the Prandtl relation
can be derived. The conservation laws across a normal shock are

Continuity equation:

ρLUL = ρRUR,

Momentum equation:

pL + ρLU2
L = pR+ ρRU2

R, (82)

Energy equation:

HL = hL + 1

2
U2

L = hR+ 1

2
U2

R = HR.

From the above shock relation equations, we can obtain

pL

ρLUL
− pR

ρRUR
= (γ̃L − 1)

eL

UL
− (γ̃R− 1)

eR

UR
= UR−UL , (83)

γ̃ ∗e∗ + 1

2
c∗2 =

(
1

γ̃ ∗ − 1
+ 1

2

)
c∗2 = γ̃LeL + 1

2
U2

L , (84)

γ̃ ∗e∗ + 1

2
c∗2 =

(
1

γ̃ ∗ − 1
+ 1

2

)
c∗2 = γ̃ReR+ 1

2
U2

R, (85)

where ˜γ is variable specific heat ratio according to the gas reaction, and the superscript *
stands for the critical state from the isoenergetic condition as in Eq. (11). Inserting Eqs. (84)
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and (85) into Eq. (83), we obtain(
1

γ̃ ∗ − 1
+ 1

2

)
c∗2
(
(γ̃L − 1)/γ̃LUR− (γ̃R− 1)/γ̃RUL

ULUR

)
+ 1

2
((γ̃R− 1)/γ̃RUR− (γ̃L − 1)/γ̃LUL) = UR−UL . (86)

After definingcs as in Eq. (32) to satisfy the Prandtl relation

c2
s = ULUR, (87)

cs is given as

cs = c∗
((

γ̃ ∗ + 1

γ̃ ∗ − 1

)
×
(
(γ̃L − 1)/γ̃LUR− (γ̃R− 1)/γ̃RUL

(γ̃R+ 1)/γ̃RUR− (γ̃L + 1)/γ̃LUL

))0.5

. (88)

Equation (88) is consistent in the sense that it is identical to the critical speed of sound
(c∗ = [2(γ − 1)/(γ + 1)H ]1/2) when the effect of reacting gas is neglected. In order to
capture the oblique shock exactly, Eq. (88) is reformulated as

cs =
(

2Hnormal
(γ̃L − 1)/γ̃LUR− (γ̃R− 1)/γ̃RUL

(γ̃R+ 1)/γ̃RUR− (γ̃L + 1)/γ̃LUL

)0.5

=
(

2Hnormal
(γ̃L − 1)/γ̃LρL − (γ̃R− 1)/γ̃RρR

(γ̃R+ 1)/γ̃RρL − (γ̃L + 1)/γ̃LρR

)0.5

. (89)

5. TEMPORAL INTEGRATION

The governing equations are discretized using the backward Euler formula as[
I

J1t
+ δ−ξ Â+ + δ+ξ Â− + δ−η B̂+ + δ+η B̂−

]n

1Qn
i, j = −Rn

i, j ,

(90)

Rn
i, j =

[
∂Ê
∂ξ
+ ∂F̂
∂η
−
(
∂Êν
∂ξ
+ ∂F̂ν

∂η

)]n

i, j

,

where1Qn
i, j = Qn+1

i, j −Qn
i, j , Â = ∂Ê/∂Q andB̂ = ∂F̂/∂Q.

The matrix on the left-hand side of Eq. (90) can be inverted approximately by the Ap-
proximate Factorization Alternate Direction Implicit (AF-ADI) or Lower Upper Symmetric
Gauss Seidel (LU-SGS) scheme. The AF-ADI scheme is used for the calorically perfect
gas and the equilibrium gas since the flux Jacobian can be obtained analytically; in the
nonequilibrium gas, the LU-SGS scheme is adopted for the efficient calculation of the flux
Jacobian and matrix inversion:

AF-ADI: [
I

J1t
+ δ−ξ Â+ + δ+ξ Â−

]
1Q∗ni, j = −Rn

i, j ,[
I

J1t
+ δ−η B̂+ + δ+η B̂−

]
1Qn

i, j =
I

J1t
1Q∗ni, j .
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LU-SGS:

LD−1U1Qn
i, j = −Rn

i, j ,

L = I
J1t
+ δ−ξ Â+ + δ−η B̂+ − Â− − B̂− − C,

D = I
J1t
+ Â+ + B̂+ − Â− − B̂−,

U = I
J1t
+ δ+ξ Â− + δ+η B̂− − Â+ − B̂+.

Here

Â± = 1

2
(Â± κ|max(eigenvalue(Â))|),

andC= ∂S/∂Q.

6. NUMERICAL RESULTS OF AUSMPW+

To validate the analysis carried out in Section 4, various numerical computations are
performed. The test problems include shock discontinuities, contact discontinuities, shock
wave/boundary layer interaction, compressible boundary layer flows, and hypersonic re-
acting gas flows. Test cases for a calorically perfect gas are presented in Sections 6.1–6.5.
Results for equilibrium and nonequilibrium gases are given in Section 6.6.

For boundary conditions, free-stream values are specified as inflow conditions, and
extrapolation from the inner computational domain is used for outflow conditions. At a
wall, a no-slip condition is specified for velocity, and an adiabatic or constant condition
is used for wall temperature. For the nonequilibrium gas, the wall is assumed to be fully
catalytic.

6.1. Shock Discontinuities

6.1.1. Stationary Normal Shock

For the normal shock condition with a Mach number of 3, initial conditions are given by
(ρ, u, p)L = (1, 3, 0.714) and(ρ, u, p)R = (3.857, 0.778, 7.381). CFL is 1.0 and all
results are converged to the machine accuracy zero. As shown in Fig. 5, AUSMPW+ and
AUSMPW capture the normal shock with one cell interface only. AUSM+ and Roe’s FDS
also satisfy this property. As proved in Section 4, the functionsf andw are not active in
shock-aligned grids.

6.1.2. Stationary Oblique Shock

Initial conditions are(ρ, u, v, p)L = (1, 1.5, 2.598, 0.714) and (ρ, u, v, p)R =
(1.862, 0.806, 2.598, 1.756), which produces an oblique shock with a 30 degree shock
angle and the Mach number of 3. CFL is 1.0 and all results are converged to the machine
accuracy zero. Figures 6 to 8 show the comparison of pressure distributions with three
speeds of sound. Case 1 is the speed of sound in Eq. (11) used in AUSM+ and AUSMPW,
case 2 is the newly defined speed of sound in Eq. (30), and case 3 is the speed of sound in
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FIG. 5. Pressure distribution of a normal shock.

Eq. (89) for equilibrium flow. Figure 6 shows the accuracy comparison of each scheme with
the same speed of sound. Calculation of the discontinuity by AUSMPW+ is more accurate
than the other schemes in Fig. 6 since Mach number and pressure splitting functions of
AUSMPW+ are less diffusive than the other schemes. Figure 7 shows that AUSMPW+ of
case 2 can capture the oblique shock in one cell interface while AUSM+ and AUSMPW
produce more than three interior cells in the shock transition layer. Figure 8 shows that
AUSMPW+ of case 3 successfully captures the oblique shock through a one cell interface
even in an equilibrium reacting gas flow. As in the previous test case, the functionsf and
w are not active in shock-aligned grids.

6.1.3. Moving Normal Shock

The problem of a shock wave propagating through a two-dimensional duct is chosen to ex-
amine carbuncle phenomena. Centerline grids are perturbed according to Ref. [6]. The initial
conditions are(ρ, u, v, p)L = (1, 6, 0, 1) and(ρ, u, v, p)R = (5.25, 0.353, 0, 40.64)
to produce a normal shock propagated with a Mach number of 6. CFL is 1.0 and the iteration
count is 2000. As in Fig. 9, AUSMPW+, AUSMPW, and AUSM+ do not show carbuncle
phenomena.

6.1.4. Expansion Shock

The initial conditions are given by(ρ, u, p)L = (1, −3, 0.714) and (ρ, u, p)R =
(3.857, −0.778, 7.381) for an expansion shock condition with a Mach number of 3. CFL



AUSMPW+ SCHEME 65

FIG. 6. Pressure distribution of an oblique shock (case 1).

FIG. 7. Pressure distribution of an oblique shock (case 2).
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FIG. 8. Pressure distribution of an equilibrium oblique shock (case 3).

FIG. 9. Moving normal shock with the Mach number of 6.
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FIG. 10. Pressure distribution under an expansion shock condition.

is 1.0 and all results are converged to the machine accuracy zero. As can be seen in Fig. 10,
Roe’s FDS without an entropy fix, AUSM+, and AUSMPW admit a physically unaccept-
able discontinuity. On the other hand, AUSMPW+ with the newly proposed speed of sound
eliminates it.

6.2. Contact Discontinuities

6.2.1. Stationary Contact Discontinuity

The initial conditions are(ρ, u, p)L = (1, 0, 1) and (ρ, u, p)R = (10, 0, 1) with a
CFL number of 1.0. All results are converged to the machine accuracy zero. As in Fig. 11,
AUSMPW+ yields a very satisfactory result because the mass flux disappears as the Mach
number goes to zero, like AUSM+, AUSMPW, or Roe’s FDS. It also confirms thatf and
w do not compromise accuracy.

6.2.2. Moving Contact Discontinuity

The initial conditions are (ρ, u, p)L = (0.125, 0.1125, 1) and (ρ, u, p)R =
(10, 0.1125, 1) with a CFL number of 0.7. The iteration count is 500 and the number
of grid points is 100. AUSMPW+, AUSMPW, and AUSM+ adopted the speed of sound
given in Eq. (11). AUSMPW+ and Roe’s FDS without an entropy fix give almost the same
results as shown in Fig. 12 but large oscillations in velocity profile can be observed in
the case of AUSM+, indicating that the functionf in AUSMPW+ plays a crucial role in
damping out the oscillations. However, when CFL number becomes 1, both AUSMPW+
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FIG. 11. Density distribution of a stationary contact discontinuity.

and AUSMPW, in contrast to Roe’s FDS, show velocity oscillations. In view of stability,
the numerical dissipation by the convective term in the slowly moving contact discontinuity
problem is so small that the numerical dissipation due to the pressure splitting function be-
comes important. When convective velocity is large, however, there is no problem in solving
this test case. Thus, AUSM-type schemes with a pressure splitting function in Eq. (10) seem
to be insufficient to prevent oscillations. Ifα becomes 0, the pressure splitting function is
almost the same as that of Roe’s FDS, and AUSM-type schemes also show the same level
of robustness as Roe’s FDS.

6.3. Hypersonic Inviscid Flow around a Cylinder

The free-stream conditions are

• calorically perfect gas,
• M∞ = 10.0.

The conditions for the computation are

• time integration : CFL= 1.0, LU-SGS,
• spatial discretization : AUSMPW+, AUSM+; the number of grid points= 9394 nodes

(see Fig. 13),
• boundary condition: slip condition.

To check the sensitivity of a scheme to grid topology, an unstructured mesh is used.
As in Fig. 14, AUSM+ yields noticeable oscillations near the stagnation region while the
oscillatory behavior is effectively eliminated in AUSMPW+ by the pressure-based weight
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FIG. 12. Pressure, density, and velocity distributions of a slowly moving contact discontinuity.

functionw. This can be seen more clearly in Fig. 15, which shows the distribution of
surface pressure coefficients for AUSM+ and AUSMPW+. In AUSM+, the overshoot in
the stagnation region and asymmetric pressure distribution in the expansion region can
be observed. The error due to oscillations around the normal shock and stagnation region
is propagated along the flow and produces the asymmetric pressure distribution in the
expansion region. Figure 16 indicates that the oscillatory behavior also produces an adverse
effect in convergence behavior.

6.4. Shock Wave/Laminar Boundary Layer Interaction

The free-stream conditions are

• calorically perfect gas,
• M∞ = 2.0,
• Re= 2.96× 105,
• Pr= 0.72,
• θimpinging shock angle= 32.585◦.

The conditions for the computation are

• time integration : CFL= 3.0, AF-ADI,
• spatial discretization : AUSMPW+, AUSM+, Roe FDS; third-order MUSCL without

limiter (κ = 1/3); the number of grid point= 55× 60 (see Fig. 17),
• boundary condition : adiabatic wall condition.
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FIG. 13. Unstructured grids around a cylinder.

Figure 18 shows that the skin friction coefficient of AUSMPW+ is in a good agreement
with other numerical results and experimental data, indicating the capability of AUSMPW+
to compute viscous flows involving shock waves. It is also noticed thatf andw do not
compromise accuracy in viscous calculations compared with results of AUSM+ and Roe’s

FIG. 14. Comparison of pressure contours.
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FIG. 15. Surface pressure coefficient.

FDS. Figure 19 shows the convergent behavior of AUSMPW+, AUSM+, and Roe’s FDS.
The error history of AUSMPW+ is similar to those of AUSM+ or Roe’s FDS. Although
numerical oscillations near a wall are also observed for AUSM+, it does not interfere with
convergence characteristics since shock strength is relatively weak.

FIG. 16. Convergence history of the cylinder problem.
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FIG. 17. Grid system for the shock wave/boundary layer interaction problem. The number of grid points=
55× 60.

6.5. Boundary Layer over a Flat Plate

The free-stream conditions for a laminar boundary layer over a flat plate are

• calorically perfect gas,
• M∞ = 0.2,
• Re= 1.0× 105.

The conditions for the computation are

• time integration : CFL= 1.0, AF-ADI,

FIG. 18. Skin friction coefficient of the shock wave/boundary layer interaction problem.
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FIG. 19. Convergence history of the shock wave/boundary layer interaction problem.

• spatial discretization : AUSMPW+, AUSM+, and Roe’s FDS; third-order MUSCL
without limiter (κ = 1/3); the number of grid point= 128× 64 (see Fig. 20),
• boundary condition : adiabatic wall condition.

Figures 21 and 22 show comparison of the velocity profiles of each scheme with the
Blasius solutions. According to Ref. [19], 32 cells are equally distributed inside the boundary
layer. Like AUSM+ and Roe’s FDS, AUSMPW+ yields an excellent agreement with theu
andv profiles of the Blasius solution. It confirms again thatf andw do not compromise
accuracy. Figure 23 shows the error histories of AUSMPW+, AUSM+, and Roe’s FDS,
confirming again the convergence characteristics of AUSMPW+.

6.6. Equilibrium and Nonequilibrium Flows around a Cylinder

The free-stream conditions are

• equilibrium and nonequilibrium gas,
• M∞ = 15,
• p∞ = 663.41 N/m2,
• ρ∞ = 9.8874× 10−3 kg/m3,
• µ∞ = 1.514× 10−5 kg/m · s2,
• T∞ = 233.75 K,
• Twall = 1168.7 K,
• Re= 2.0× 105.

The conditions for the computation are

• time integration : CFL= 0.5, LU-SGS,
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FIG. 20. Grid system for the flat plate. The number of grid points= 128× 64.

FIG. 21. u profile.
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FIG. 22. v profile.

FIG. 23. Convergence history of the flat plate problem.
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FIG. 24. Grid system for the blunt wedge.

• spatial discretization : AUSMPW+, AUSM+; third-order MUSCL with minmod limiter
(β = 1, κ = 1/3); the number of grid point= 80× 55 (see Fig. 24),
• boundary condition: constant temperature wall (fully catalytic wall).

Figures 25 to 29 are the results of AUSMPW+ and AUSM+ applied to equilibrium and
nonequilibrium flows. The result of nonequilibrium flow is obtained by the four-temperature

FIG. 25. Comparison of pressure distributions (AUSMPW+, AUSM+) around an equilibrium blunt wedge.
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FIG. 26. Convergence history of the equilibrium blunt-wedge problem.

model. Although the two-temperature model is sufficient to obtain accurate results in most
hypersonic flow problems, the four-temperature model is adopted in the present work to test
the robustness of AUSMPW+ in nonequilibrium flows. Since structured grids are much more
aligned than unstructured grids, the oscillatory phenomena of AUSM+ are substantially

FIG. 27. Comparison of pressure distributions (AUSMPW+, AUSM+) around a nonequilibrium blunt wedge.
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FIG. 28. Distribution of species along the stagnation streamline.

FIG. 29. Distribution of vibrational temperature along the stagnation streamline.
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reduced, compared to the results in Section 6.3. Oscillations around the shock or a wall,
however, are still observed, whereas AUSMPW+ does not exhibit such behavior as in the
case of unstructured grids. Unlike the case of equilibrium flow, the result of AUSM+ in
nonequilibrium flow shows no oscillation around the shock. This can be explained by the role
of the source term in the nonequilibrium gas. As can be seen in Figs. 28 and 29, the source
term is active to damp out oscillations in the transition region between the frozen and equi-
librium states. Figure 26 confirms again a good convergence characteristic of AUSMPW+.
Figure 28 shows the mole fraction distribution of each species along the stagnation stream-
line. It can be seen that oxygen is almost dissociated, and AUSMPW+ calculates a highly
dissociated flow without any difficulty. Figure 29 presents the temperature distributions of
each species along the stagnation streamline.

7. CONCLUSIONS

As a robust, accurate, and efficient numerical flux function to compute hypersonic flows,
the AUSMPW+ scheme is proposed. The AUSMPW+ scheme, an improved version of
AUSMPW, is designed to enhance the accuracy and computational efficiency in captur-
ing oblique shock and to eliminate physically unacceptable expansion shocks. Although
AUSM+ is excellent in many respects, it shows overshoots or oscillations behind shocks
and near a wall. AUSMPW+ uses weighting functions based on pressure to reflect both
properties of a cell interface. Exploiting these functions properly, AUSMPW+ successfully
eliminates oscillations and overshoots without compromising accuracy and computational
efficiency. In addition, grid dependency is reduced and convergence behavior is improved.

With the newly defined numerical speed of sound satisfying the stationary oblique shock
equations, AUSMPW+ is able to capture a stationary oblique shock in one cell interface
in shock-aligned grids. In non-shock-aligned grids, the newly proposed speed of sound
and Mach number and pressure splitting functions of AUSMPW+ avoid extra numerical
dissipation to yield more accurate results. Numerous computations from supersonic frozen
flows to hypersonic nonequilibrium flows confirm the characteristics of AUSMPW+.
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