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In order to overcome some difficulties observed in the computation of hyper-
sonic flows, a robust, accurate and efficient numerical scheme based on AUSM-type
splitting is developed. Typical symptoms appearing in the application of AUSM-
type schemes for high-speed flows, such as pressure wiggles near a wall and over-
shoots across a strong shock, are cured by introducing weighting functions based
on pressure (AUSMPW). A newly improved version of the AUSMPW scheme,
called AUSMPWH+, is developed to increase the accuracy and computational effi-
ciency of AUSMPW in capturing an oblique shock without compromising robust-
ness. With a new definition of the numerical speed of sound at a cell interface,
capturing an oblique shock is remarkably enhanced, and it can be proved that an
unphysical expansion shock is completely excluded. With simple Mach number in-
terpolation functions, AUSMPWH+ is efficient to implement. Extensive numerical
tests from supersonic frozen flows to hypersonic nonequilibrium flows validate that
the AUSMPW+ scheme provides accurate solutions for the computation of high-
speed flows. @ 2001 Elsevier Science

Key Words: AUSMPW+; AUSMPW; AUSM+,; oblique shock; accuracy; robust-
ness; efficiency; hypersonic flows; equilibrium gas; nonequilibrium gas.

1. INTRODUCTION

With the practical need for efficient hypersonic vehicle design, there has been con
uous research to unveil the physics of hypersonic flows experimentally or numerica
It is believed that a full-scale hypersonic vehicle will be developed in the early 21
century. At a pace with this research, much effort has been put into the analysis of
personic flows using CFD. Methods developed for the analysis of subsonic or supers
flows have been extended to hypersonic flow. Up to now, however, these methods do
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seem to provide satisfactory results compared with those of subsonic or supersonic fl
This is mainly due to the characteristics of high-enthalpy flows involving complex g
reactions.

High-enthalpy flows commonly involve complex physical phenomenaincluding chemic
reactions, ionization, vibration of molecules, and radiation. Thus the proper modeling
high-enthalpy flows is essential for an accurate numerical simulation. Although mechanis
of many chemical reactions are well understood, it is still difficult to predict accura
distributions of chemical species in flows involving strong interactions between vibratic
and chemical reactions. Turbulence phenomena at high pressure and temperature, invc
several molecular species, are not well known either. Turbulence combined with spa
particles produced by abrasion from the surface of a hypersonic vehicle makes flow ana
extremely difficult [1].

Aside from problems of physical modeling, the issue of proper numerical modeling po:
challenges, especially for the treatment of errors related to spatial discretization and
distribution, which is the focus of the present work.

A spatial discretization method should maintain a high level of accuracy, robustness,
efficiency to be applied to hypersonic flows. Hypersonic flow problems generally inclu
severe viscous dissipation in a boundary layer and strong shock waves leading to the |
gradient of flow properties. For the accurate calculation of stiff gradient regions, nume
cal dissipation has to be minimized. Insufficient numerical dissipation, however, indu
numerical instability while excessive numerical dissipation easily contaminates physi
dissipation. Once unphysical oscillations appear in hypersonic flows, they directly inf
ence the robustness, accuracy, and efficiency of a solver. Numerical instability gener
increases in proportion to the local Mach number, and as a result, negative density, pres
and/or energy are easily produced. Spatial accuracy can deteriorate since it cannot lo
be better than the first order to avoid unphysical oscillations due to the monotonicity ¢
straint. Grid systems for hypersonic flow are commonly required to be denser than th
for subsonic or supersonic flow to calculate stiff gradient regions accurately, which lim
the time step due to the CFL condition and takes requires additional computational ti
for a solution to converge. Moreover, the source term from chemical reactions poses
additional barrier to efficient computation.

Although several schemes have been developed to cope with these difficulties and |
been applied to various hypersonic flow problems, their performances still seem to be
satisfactory. Today, upwind-biased schemes are the main trend of spatial discretiza
which may be categorized as either FVS (flux vector splitting) or FDS (flux differen
splitting). FVS, such as Steger—Warming’s [2] or Van Leer’s [3], has advantages in vi
of robustness and efficiency. It can be proved that these types of FVS schemes are
tively conservative under a CFL-like condition [4], which is very desirable for simulatin
high-speed flows involving strong shocks and expansions. However, it is also well kno
that these schemes have accuracy problems in resolving shear layer regions due to e
sive numerical dissipation, which occurs more seriously in hypersonic flow. Much eff
has spent on developing improved FVS-type schemes for high-speed flows, and they |
shown reasonable enhancement in accuracy. In contrast, FDS, which exploits the soll
of the local Riemann problem, usually provides accurate solutions. Roe's FDS [5] ha
matrix that becomes zero at a sonic transition point and a contact discontinuity. Thus
able to capture a shock and resolve the shear layer region very accurately. Unfortuna
it has several robustness problems such as the violation of the entropy condition, failur
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local linearization, and appearance of carbuncles [6]. Those defects become more serio
hypersonic flow than in subsonic or supersonic flow. Although an entropy fix may enhar
the robustness, a large amount of entropy fix is usually required in hypersonic flow, wh
requires extra numerical dissipation. This also may cause a decrease of the total entt
behind a shock wave and the inaccurate estimation of the surface heating rate. Determi
the optimal amount of entropy fix without compromising accuracy is difficult and depen
highly on the user’s experience. Some variants of Roe’s FDS such as Harten—Lax—van Le
(HLLE) [7] increase the robustness of Roe’s FDS at the expense of accuracy. Theref
contemporary concern is shifted toward combining the accuracy of FDS and the robustt
of FVS.

In an effort to design a numerical scheme to meet this concern, the AUSM (advect
upstream splitting method) [8] was proposed by Liou and Steffen. In AUSM a cell-interfa
advection Mach number is appropriately defined to determine upwind extrapolation for ¢
vective quantities. As a result, AUSM is accurate enough to resolve a shear layer, and
simple and robust. Thus AUSM possesses the merits suitable for the analysis of hypers
flows. However, the characteristic of advection in AUSM may induce the oscillations
flow properties. Successively updated AUSM-type schemes such as AUSMD/V [9] &
AUSM+ [10] did not overcome the problem perfectly. AUSMD/V eliminates numerica
oscillations or overshoots behind shock waves, though not completely, but may exh
carbuncle phenomena. AUSM+ eliminates carbuncle phenomena but still shows numel
overshoots behind strong shock waves and oscillations near the region of small convec
velocity or pressure gradient, such as near a wall or around a stagnation point. It was
served that oscillations of AUSM-type schemes could be cured by introducing weighti
functions based on pressure, leading to the development of AUSMPW (AUSM by presst
based weight functions) [11, 12]. AUSMPW was found to possess many desirable featt
such as no carbuncle phenomena, elimination of overshoots, accurate numerical dis:
tion, and preservation of the total enthalpy. Depending on the particular version, LDF
(low diffusion flux-splitting schemes) proposed by Edwards did not show oscillations ne
a strong shock or carbuncle phenomena. But the two problems do not seem to be ¢
simultaneously [13].

In the present paper, a remedy for the issue related to the accurate discretizatior
computations of hypersonic flows is proposed by developing a new spatial discretizat
scheme, named AUSMPW+. AUSMPW+ is designed to increase the accuracy and ¢
ciency of its predecessors by introducing a new numerical speed of sound and by s
plifying AUSMPW. AUSMPW+ has higher resolutions in capturing oblique shocks tha
any other AUSM-type scheme and eliminates the unphysical expansion shocks obse
in AUSM+, AUSMPW, or Roe’s FDS. Furthermore, the AUSMPW+ scheme is more eff
cient to implement than AUSMPW while maintaining the same level of the robustness ¢
accuracy.

The present paper is organized as follows. A brief description on the governing equati
of a calorically perfect gas and equilibrium and nonequilibrium gases is given in Sectior
In Sections 3 and 4, AUSMPWH+ is introduced and the characteristics of the scheme
analyzed in detail. In Section 5, the temporal discretization adopted is briefly explain
Numerous test cases from frozen flows to nonequilibrium flows are presented to ve
the properties of AUSMPW+ in Section 6. Finally, conclusions based on the results of:
previous sections are drawn in Section 7.
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2. GOVERNING EQUATIONS

The two-dimensional Navier—Stokes equations in a conservation form can be expre:

as
0Q 0E OoF dE, 0OF,
B ST N (et Al S, 1
8t+8x+ay (8X+By>Jr @
where the flow and flux vectors are
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with &, = UTyyx + vTxy — Ox, fy = Utyy + vTyy — Qy. Srepresents the source term for ther-
mochemical phenomena. Depending on the treatment of the reaction effect of air molect
three types of gas can be considered.

For a calorically perfect gas that does not include the effect of vibration or chemi
reaction, the equation of state is given by

1
p=(y—Dpe=( —Dp (a - 5<u2 + v2)>, (3)

with y = 1.4 for air.

For an equilibrium gas where the characteristic time scale of reaction is much sho
than that of fluid, the equation of state has the same form as Eq. (3) with variable spe«
heat ratioy

1
p= (7 —pe= (7 —1p (a - E(u2 + v2)>. (4)

¥ in EQ. (4) is the function of two thermodynamic variables. Thermodynamic variables a
transport coefficients are calculated using the curve-fitted data in Refs. [14, 15].

For a nonequilibrium gas, all the species and vibrational energy equations must be
cluded to describe the reaction process, and the equation of state is

R
p=> s T (5)
s S

whereR s the universal gas constant (8.314 kJ/kgpl - K) and Ms is the molecular weight
of each species in the nonequilibrium gas. In order to calculate nonequilibrium effects, |
species of chemical reaction models are used in the temperature range ef 2500000 K
0+ M« 0O+ 0+ M,
No+M < N+ N+ M,
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NO+M < N+O+ M, (6)
O+NO < N+ Oy,
O+ N, < N+ NO,

whereM can be any one of the five possible collision partners. Considering the spec
continuity and vibrational energy equations, the flow and flux vectors of Eq. (2) become
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S is the source term that includes in the species continuity equations age i+
Wi &b, ) in the vibrational energy equations of each species. As shown in Eqg. (7), t
four-temperature model is adopted to test the robustness of AUSMPW+ in nonequilibri
problems involving highly dissociated flow and low density of diatomic molecules. Reacti
rate constants and transport coefficients are calculated according to Refs. [16, 17].

3. SPATIAL DISCRETIZATION

3.1. Proposed Scheme: AUSMPW+

In AUSM-type schemes, an advection Mach number at a cell interface is defined
determine an upwind extrapolation for convective quantities. Although the usage of
advection Mach number yields a notable improvement in accuracy, it may also indt
spurious oscillatory phenomena. AUSM+, for example, shows oscillations near a wall :
across a shock. The numerical flux of AUSM+ at a cell interface is given by

Fiausw = (M[,_s + Mgl,_1)c @+ (PF[,_sPL+ Prl,_sPr).  (8)

8

if Mz = M{" + Mg > 0.@ = (p, pu, pH)T, andP = (0, p, 0)". The subscripts /2 and
(L, R) stand for a quantity at a cell interface and at the left and right states acros
cell interface, respectively. The split Mach number and pressure of AUSM+ across a
interface are given by

£IM £+ D)?£BM2-1?% M| <1,

M:l: — 9
o LM+ M), IM| > 1, ©
LM £ 1)22F M) £aM(M2 — 1)2
7 F M) £aM( )%, IM <1,
Pi|a = 1 i (10)
5(1 £ sign(M)), M| > 1.
The Mach number of each side is defined as
UL r L a
ML= ¢3=min@.,Cr) (11)

NI

wheret = c*z/[max(|U [, ¢*)] and the critical speed of soumd is given by

2()/—1)H
y+1

from the isoenergetic conditiomd is the total enthalpy and is the velocity component
normal to a cell interface.

As can be seen from Eq. (8), AUSM+ considers the one-side convection quntity
only according to the sign of a cell-interface Mach numbe,,). This is thought to
yield oscillations because considering the one-side quantity only is unsuitable for the fl
physics in subsonic regions. Other phenomena that are frequently seen in AUSM-t
schemes are oscillations across a shock. Although the reflection of only a one-side qua
produces some disadvantages as mentioned above, it is also useful in the sense that Al
type schemes with an advection Mach number can capture a stationary shock or col
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discontinuity through one cell interface. Thus itis intended to carefully control the advecti
property of AUSM+ by employing both-side quantities to remove oscillatory phenomel
while maintaining the original advantages of AUSM+ in accuracy, efficiency, and robustne
In these respects, the AUSMPW+ scheme is designed to control the advection propert
introducing pressure-based weighting functidnandw only in the problematic regions
such as ashock or a boundary layer. The improvement of AUSMPW+ consists of three ps
The first is the introduction of a new definition of the numerical speed of sound for hig
resolution in capturing an oblique shock. The second is the elimination of the physice
unacceptable expansion shock which is observed in AUSM+, AUSMPW+, or Roe’s FC
The last is to simplify AUSMPW to enhance computational efficiency. For the purpose
clear presentation, AUSMPW is briefly introduced.

3.1.1. AUSMPW (AUSM by Pressure-Based Weight Function)

The main feature of AUSMPW is the removal of the oscillations of AUSM+ [10] near
wall or across a strong shock by introducing pressure-based weight functions. AUSMI
uses the pressure-based weight functfoto treat the oscillations near a wall andto
remove the oscillation across a strong shock. The starting point of AUSMPW is to obse
the fact that AUSM+ and AUSMD [9] are complementary to each other. AUSM+ has r
carbuncle phenomena but shows numerical oscillations near a wall while AUSMD has
numerical oscillations near a wall but shows carbuncle phenomena. This difference cal
seen by examining the mass fluxes of AUSM+ and AUSMD,

- Mt -
pUL ausm+ = M "C1pL + MgCip, my >0, (12)

,OU%‘AUSMD = ML"C%/OL + MEC%pR, ,Om% Z O, (13)
wheremy, = M{" + Mg andpmy 2 = pL M{" + prMg.

From Egs. (12) and (13), it can be noticed that AUSM+ considers the left cell density or
while AUSMD takes both cell densities. This is thought to be the reason for the numeri
oscillations of AUSM+ and carbuncle phenomena of AUSMD. In order to summon AUSM

and AUSMD, the density ratio is multiplied by the second term of Eq. (12) as follows:

_ P
PUL AusMPW= MfC%PL + MgCip0 <—R> (14)
PL
With the equation of state applied to the speed of sound, the density is given by
pP=y—. (15)

If the values of the specific heat ratio and the speed of sound are chosen at a cell inter
Eq. (14) becomes

+ - VS%ER
pUL ausmpw= M{ CipL + MgCipL —5-, (16)
Vs

PR,
PUL AUSMPW= MEC%PL + —MgcCipL. (17)
PL 2
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By introducing pr/ pL, AUSMPW considers the right cell properpk, which prevents
the numerical oscillations near a wall. For symmetric representation, Eq. (17) is modif
as [11]
PUL pusMPW= % M{cipL + % MgCipL, (18)
S S

or

- PL Pr -
pu%,AUSMPW: (MI__FC%,OL + MRC%pL>AUSM++<ps — 1) ME’C%pL +<p — 1) MRC%)OL

S

= (MfC%pL + M,;C%pL)AUSMJr—i— fL MfC%pL + frRMgC1pL, (19)

where

%_1’|ML,R|<17 pS?éO

fLr=

o, elsewhere

and
ps=P| _s P+ Pr|,_s Pr.
16 16

Equation (19) takes the same form as AUSM+ in the supersonic rediop £ 0). The
choice forps prevents the unwanted interferencefpfr across a shock wave and maintains
the symmetric and continuous transition @f as the Mach number goes to zero asymp:
totically. Although the modified flux of Eqg. (19) does not show an oscillatory behavic
near a wall, it may have a problem in accuracy, particularly in boundary layers and sh
regions due to the increase &§fM;" + frMg. For example, when the Mach number in-
creases form zero to on®);" does not become zero as can be seen from Eq. (9). Th
fuM," remains active inside a boundary layer or in shock regions and provides extra
merical dissipation. As another side effect, it has the potential to induce shock instabi
causing carbuncle phenomena since Eq. (19) possesses the numerical dissipation te
proportion to the pressure difference [18]. These problems were cured by carefully limit
fL,R to

NS
. (% —1)pl(pL.r, PRL)IM[ glg=ol x min(l, (@) ) IMLRI<1,
LR=

0, IML Rl > 1,
where

4-min(%,¥) -3, 2 < min(

X
y’
pl(x,y) = .

0, 0< mln(

Second, the numerical oscillations near a shock wave or the region of a stiff gradi
have to be examined. AUSM+, which considers the one-side property according to
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sign of a cell-interface Mach number, may yield excessive or insufficient numerical flux
especially in a non-shock-aligned grid system. This produces oscillations of flow properti
In AUSMPW, both properties across a cell interface are considered through another pres:t
based weight functiow,

pUL ausmpw= (1+ fL)ME-Lg:%C%pL +@1+ fR)M§|ﬂ:éC%((1_ w)-pL+w-pr), (21)

where
3
. (PL Pr
w(pL, =1-min|l —,— ).
(PL, PR) <DR DL)

From the form ofw, it can be noticed that the value ofbecomes very small except in the
region of a shock discontinuity.
In summary, the numerical flux of AUSMPW is written as

F

Nl

= M{C;® + Mgc1 PR+ (F>L+|a:%F>L + Pg]a:%PR), (22)
where
(i) formy, >0

M =M+ Mg oo = Melyms x w1+ fr) + (LM Ly + fRMR[,_s).

8
Mz = Mg, x w- (L+ fr).

o
Il

(if) for my» <O

<
~+
I

Mir xw- 1+ f),

),

with ® = (p, pu, pH)T, and P = (0, p,0)". The split Mach number and pressure of
AUSMPW at a cell interface are the same as those of AUSM+ in Egs. (9) and (10). T
Mach number on each side of a cell interface is also defined as in Eq. (11).

|
My = Moot + Moo = ME[pls w - @+ fo) + (M|, + frMg ],

1
8

3.1.2. AUSMPW+: An Improved Version of AUSMPW

Inthe previous section, it was mentioned tIﬁ@MLﬂ,g:l/g + frMRglp=1/8 Of EQ. (22) was

designed to remove oscillations near a wall &g |s=1/8 x w - (1+ fr) or ML*|5=1/8 X

w - (14 fL) was designed to exclude overshoots or oscillations behind strong shocks
order to maintain the same accuracy level as AUSM+ or Roe’s FDS and to reduce sh
instability that induces carbuncle phenomepgp., pr) x |M,fR|5:0| x min(1, (\7._,R/
c1/2)%2°), which acts like a limiter of the functiorf_ g, is multiplied to control the mag-
nitude of f M{" + frMg. Without this additional limiting term, the numerical dissipation
term, f_ M," + frMz, may become much larger, particularly in hypersonic boundary laye
due to the noticeable difference betwedii and Mg, which directly influences sensitive
aerodynamic coefficients such as the surface heat transfer coefficient. It also gives ar
verse effect on accuracy in capturing shock waves bechudg + frMy has almost the
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FIG. 1. Pressure distribution around a cell interface.

same order of magnitude as other dissipation terms. Themﬁrﬂﬁ:o is designed to scale
down the order of magnitude df g, and min(1, (|\7L.RI/01/2)°'25) makesf_ g vanish in
the stagnation region. The functiguh(p., pr) is designed such thdi r becomes zero in
large pressure gradient regions.

Although AUSMPW has the merits, it contains a complicating functfprk, which
entails extra computational costs. In AUSMPWt,r is modified by considering accuracy,
shock instability, and efficiency.

To maintain accuracy in resolving the shear layer and capturing the shock wave,
following approximation is introduced:

M =Mz, M — 0. (23)

Then,fLM;" + frMg becomes fr — f )My whenmy; > 0, and itdecreasesin proportion
to the Mach number. This obviates the usageldp., pr) x |M|:_E,R|/3:Q| x min(1, (\7L,R/
01/2)°~25) in f_ rwithout introducing excessive numerical dissipation. To remove carbunc
phenomena, however, it is necessary that the functidiecomes zero in the region of a
strong moving shock. In AUSMPWH+, this is achieved by multiplying the term that conside
pressures in the transverse direction as shown in Fig. 1. As a result, AUSMPW+ car
summarized as

Fi=M/Ci® +MgCi®r+ (P |uzsPL+ Prl,_3PR). (24)
where
(i) formy, >0
=M+ Mg [L—w) A+ fr) — f],
=Mg-w-1+ fr),

< £
~+

T |
|

(i) for my» <O

-u)~(1+f|_),
+ M [Q—w) - @4+ )+ fL— TR,

Y
~+
I
< Z
T+

o
Il
D |
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with
PL Pr 3
w(pL, pr) =1— min(—, —> . (25)
Pr PL

And f_ ris simplified to

PL.rR ; Min(paL, PR P2.L, P2.R) \ 2
(T -1) mln(l, min(p, pr) )% ps#0, (26)

0, elsewhere

fL,R =

whereps = P p. + Py pr.

As shown in Eq. (25) the functiom goes as the cube of the pressure ratio and has
very small value except at a large pressure gradient region such as a shock. The vall
fL r also becomes very small except at the region where oscillation exists. As a res
AUSMPW+ has the same form as AUSM+ except at a shock or oscillatory region. T
accuracy, robustness, efficiency, and convergence characteristics of AUSMPW+ will
examined in detail in Section 4 and 6.

The Mach number and pressure splitting functions of AUSMPW+ at a cell interface ¢
also simplified to

W +3:(M£D% M <1,

=1, (27)
FMEIMD, M| >1,

. iMED?2FM) £aM(M? — 12 M| <1, 28)

P |o¢= 28
Z(1£sign(M)), M| > 1,

wherea ranges from 0 to BL6. Whenx = 0 AUSMPW+ is more robust in view of stability
since the pressure splitting function is a little more diffusive.
The Mach number on each side is similarly defined as follows:

UL r
C

M R = (29)

NI

However, the choice of the speed of souog) of AUSMPW+ is quite different.

3.1.3. Numerical Speed of Sound for AUSMPW+

In AUSM-type schemes, the choice of the numerical speed of sound is crucial sinc
is closely related to the resolution of physical discontinuities. Using a cell-interface sou
speed, Liou suggested the Mach number on each cell side in AUSM+ as in Eq. (11) [
Although AUSMPW with the sound speed of Eq. (11) is able to capture a stationary norr
shock through one cell interface [11, 12], an oblique shock is smeared over about four
interfaces in a nonaligned grid system. Even with nearly shock-aligned grids, an oblic
shock cannot be captured in one cell interface. Moreover, AUSMPW with the speed of sol
based on Eq. (11) cannot distinguish an unphysical expansion shock from a compres
shock, thus admitting an entropy-violating solution like AUSM+ or Roe’s FDS.
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Oblique shock
(Cell-interface)

FIG. 2. Schematic of an oblique shock.

In order to improve the capability of capturing an oblique shock and to remove an unph
ical expansion shock, the following numerical speed of sound is designed for AUSMPV!
First, the speed of sound is defined according to flow directions to pick out an entro,
decreasing expansion shock. Second, to capture a stationary oblique shock exactly thr
one cell interface in a shock-aligned grid system, the total enthalpy excluding the tanger
velocity component along an oblique shock is used in defining the speed of sound.

Although an oblique shock cannot be captured through one cell interface in case
non-shock-aligned grids, numerical dissipation decreases in proportion to the amour
the tangential velocity component excluded. Thus an oblique shock can be captured r
accurately with the present formulation of the speed of sound:

1
() 5(UL+Ur) >0: ¢

1 = ci/max(|Ug], cs).

= c5/max(|UL], cs),

) (30)
(i) E(UL +URr) <0: ¢

From the conservation laws normal to an oblique shock and the equation of state fi

calorically perfect gas, the speed of sound normal to a cell interfgcis,given by

Cs = \/2 (¥ =1/ +D Hnormas (31)

whereHnormar = 0.5 x (Hiotal,L — 0.5 X V2 + Higta g — 0.5 x V3) (see Fig. 2). Then, we
can see thats satisfies the Prandtl relation across an oblique shock just like the critic
speed of soundct) across a normal shock,

U, Ur
—_ X —_—

o X =1 (32)

The speed of sound for reacting gases will be discussed in Section 4.7.

3.2. Higher Order Interpolation

Upwind schemes have in general first-order spatial accuracy. For better accurac
MUSCL (monotone upstream-centered schemes for conservation laws) approach u
primitive variables is adopted to interpolate higher order left and right states across a
interface. To monitor the local gradient of a solution and control spatial order, we L
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minmod limiter

WL =W + %1[(1—K>€+ (14+6)AL,  Wr=Wy— 3[(1 — )V + L+ ) Alis1,
Ai = min mod[Wi 1 — W), BOW — Wi _1)],

_ _ (33)
Vi = min mod[(W — Wi_1), B(Wi;1 — W],

minmodx, y) = sign(x) max[0, min(xsign(y), ysignx))], 1< 8 < g — Z;

whereW = (p, u, v, p)T. This formulation can produce third-order spatial accuraeyisf
equal to ¥3.

4. CHARACTERISTICS OF AUSMPW+

In this section, the numerical properties of the AUSMPW+ scheme are analyzed fr

the viewpoint of the accuracy, robustness, and efficiency.

4.1. Accuracy

Since AUSMPW+ is based on AUSMPVW, it exhibits the same accuracy as AUSMP'
Additionally AUSMPW+ increases accuracy in capturing an oblique shock due to the nev
proposed speed of sound and less diffusive Mach number and pressure splitting functi
In order to investigate properties of AUSMPW+, we adopt the flux form which shows tt

numerical dissipation term explicitly,
1
Fi= E[(UL‘I)L+UR(I)R)+(PL+PR)]+Da (34)
whereD stands for numerical dissipation.

4.1.1. Stationary Oblique Shock Discontinuity

The speed of sound used in AUSMPWH+ is designed such that the corresponding c
acteristic Mach number satisfies the Prandtl relation, Eq. (32), across a stationary obli
shock in a shock-aligned grid system. Assuming a cell interface is aligned with a shock
in Fig. 2, the Mach number of AUSMPW+ across a stationary oblique shock is given by

M — U U (UL>2
ST T @ug e N
UR UR UL UR ( )
MR = — = > = _ E— = 1,
Cs (CS/UL> Cs Cs
whenU| > Ug. Then, the flux of AUSMPW+ becomes
Fi=M{Ci® +MgCi®r+ (PP + PrPr) =UL® + pii, (36)

if my/2 > 0. In this case® = (p, pu, pv, pH)T.
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Here,
1+ + — UL
ML = M{ + Mg x (L-w)- 1+ fr) = fu) = =,
2
Mg = Mg xw-(1+ fg) =0.
Now, if we apply the oblique shock relations,
@ pLUL = prUR, @ pLUZ + pL = prUZ + Pr.
@ VL = VR, @ HL = Hg, (37)

®u=sinf-U+cosh-V, ®v=-co%-U-+sing-V,

the numerical dissipation of AUSMPW+ becomes
1

D1 = _é(pRUR —pLUL) =0,
1 .

Dl2 = _E(PRURUR — pLu UL + (pr — pL) - SinG)

1 .
= _E((pRURUR —pLULUL + pr — po) - SiN6 + (orVRUR — pLVLUL) - cOSO)

=0,
(38)

1
D|z = _é(pRURUR —pLvtUL + (pr — PL) - (—cosh))

1 .
= —E((PRURUR —p U UL + pr—pL) - (=c0s8) + (prVRUR — pLVLUL) - sinB)
=0,

1
Dls = _EPLUL(HR —Hy) =0.

Thus all AUSMPW+ dissipation terms become zero. This means that AUSMPW+ ¢

capture a stationary obliqgue shock without numerical diffusion in a shock-aligned g
system. It is important to note that the dissipation terms of AUSMPW+ do not contain t
pressure-based weight functioh&ndw. This implies thatf andw are active in removing
oscillations only in a non-shock-aligned grid system and that the resolution of a sh
discontinuity is independent of andw in a shock-aligned grid system. Also note that
AUSMPW+ with various forms off andw, such as the vector form df andw, can yield
a more appropriate form of numerical dissipation.

4.1.2. Stationary Contact Discontinuity
In the region wherdl — 0, the dissipation terms of AUSMPW+ become
Dl123 =0, (39)

whenp. = pr.

Thus AUSMPWH+, similar to AUSMPW and AUSM+, can calculate a stationary conta
discontinuity exactly and does not have any extra dissipation. Moreover, AUSMPW+ 1t
give more accurate solutions in a boundary layer, expansion, and shock regions becau:
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interpolation function in Egs. (27) and (28) adopted in AUSMPWH+ is less diffusive the
those in AUSM+ and AUSMPW.

4.1.3. Expansion Shock

The numerical dissipation of Roe’s FDS, AUSM+, and AUSMPW across a hormal sho
can be expressed as follows:

Roe’s FDS :
1
Dl = _é(pRUR —pLUp),

1
D|2=—§(PRU§—PLUE+ PR—PL). (40)

1 U _Ug
2(y -1

Dls = (PRUE — pLUZ + pr— PL).

AUSM+, AUSMPW:

1
Dl1 = _E(pRUR — pLUyL),

1
Dl> = —E(PRUFZQ—,OLUE+ Pr— PL). (41)

1
D|z = _EPLUL(HR — Hp).

AUSMPW+:

for M. > 1 > Mg > 0 (compression shock)

1
Dl = _é(pRUR — pLUL),

1
Dl = _é(pRUI%_:OLUE+ Pr— PL), (42)

1
D|z = _EPLUL(HR — Hy);

for 0 < ML < 1 < Mg (expansion shock)

1
D1 = _E(PRUR —pLU) + (M — Mu)CipL,

1
Dl = —5(pRUé —pLUZ+ pr—pL) + (M — Mu)ciplUL + (P —Dp, (43)

1
Dz = _E(pRURHR — pLtULHD) + M = Mu)cio He.

Equations (40) and (41) express a stationary normal shock relation. Thus the num
cal dissipation becomes zero across a shock discontinuity, which means that Roe’s F
AUSM+, and AUSMPW schemes can capture a stationary normal shock without numeri
dissipation. However, the numerical dissipation terms shown in Egs. (40) and (41) do
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have a built-in mechanism to distinguish a compression shock from an unphysical exg
sion shock. For AUSMPW+, the speed of sound which considers flow directions as shc
in Eqg. (30) distinguishes a compression shock from an expansion shock. Equations
and (43) show the numerical dissipation in each case. Under unphysical expansion sl
condition, the numerical dissipation of AUSMPW+ does not become zero due to the ac
tional terms in Eq. (43). From the physical point of view, AUSMPW or Roe’s FDS allow a
expansion shock solution since they violate the entropy condition. In contrast, AUSMP\
never allows this situation, which is proved in the following.

Two solutions can be considered that satisfy the inviscid governing equations acro
shock discontinuity. In case of_, ug > 0,

ML > 1> Mg >0, if pr> pL (compression shock) (a4)
0< ML <1< Mg, if p> pr(expansion shock)

The entropy variation across a shock discontinuity are given as

_ _ Tr Pr
AS =SgR—S_ _cpln(TL) RIn(pL)

_ 2y o 2+(V—1)ME}_ [ 2y o
_Cp|n|:1+—y+1(ML 1)} [7(y+1)ME RIn 1+y+1(ML 1)|. (45)

Then, the entropy variation of Eq. (45) exhibits

As >0, if M_ > 1 (compression shock)
As=0, if M_ =1 (expansion fan, acoustic waves) (46)
As <0, if M. < 1 (expansion shock)

Thus it is easily known from Eq. (44) to Eqg. (46) that the entropy variation is positive for
compression shock and negative for an expansion shock. Also, the Prandtl relation

up URr
7X7

= M"M% =1, 47
c ¢ LR (47)

wherec* = /2(y — 1) / (y + 1) HL o r IS the critical speed of sound, is satisfied.
From Egs. (44) and (47), it can be shown that the following properties exist acros
shock discontinuity:

M*>1=M>1,

M f=1=M=1, (48)
M*<1l=M<l

For an expansion shock, the left and right side of Mach numbers across the shock dis
tinuity satisfy the condition 6< M| < 1 < M}, and the following result can be obtained.

THEOREM (ENTROPY CONDITION OF AUSMPWH+). With the numerical speed of sound
defined at a cell interfageEq. (30), the numerical flux function of AUSMPW+ scheme
Eq. (24), recognizes an expansion shock and excludes it by the action of the numer
dissipation Eq. (43).
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FIG. 3. Fluxes across cell interfaces around an expansion shock discontinuity.

For the initial condition as in Fig. 3, the time evolution of the expansion shock is examin
by using AUSMPW and AUSMPW+ schemes.
For AUSMPW, the speed of sound at a cell interface is given as

C*Z c*
Cr= =
lurl Mg
*2

CL = c* s
(49)
c

= min(C., Cr) =

1
2

lur|”
And the left and right side Mach numbers are

UR|UR]

_ Uup|ug|
- C*2

C*Z

My =M/My=1 Mg= =MZ > 1 (50)
Then, the flux vector at each cell interface becomes

F=Mjc;® +MzC:i®r+ PP+ PrPr. (51)
From Eg. (51) and the consistency of AUSMPW,

Fl'=u ® +P,
Fl —u @ +P, (52)
g UrPRr + PRr.

Sinceu, @, + P is equal tour®r + Pr across the expansion shock, the conservativ
vector does not change during the time evolution:
=Q - F"-F)=ql,
T;—l — Q?? _ (Flll o F”) — ?Qa (53)
A" = AS" < 0.
Thus the entropy variation keeps its initial value and the expansion shock maintains

initial state. A similar result can be obtained for AUSM, AUSM+, and Roe’s FDS.
On the other hand, the speed of sound of AUSMPW+ at a cell interface is given as

C*Z c*

CL :C*’ Cr = =
lurl Mg

)

(54)

C: =cC_=cC"

1
2
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The left and right side Mach numbers can then be expressed as

M, = S5 — Mr <1, MR=§=M;>1. (55)
Thus, the flux vector at each cell interface is given by

F= M,_*C%<I>|_+M§C%‘1>R+ PIPL + PR Pr, (56)

and the flux vectors in Fig. 3 are

F' = u ® +P,
F' = Mc*®_ + PP, (57)
Fil = Ur®Pr + Pr.

The conservative vector &t At may be expressed explicitly as

n+l QL At(F” _ FI )n
= QE + At[(ML — +)C*¢)L +@1- PEr)PL]n

1 U|_ 1 UL up "
=Q"+At|—>(—=-1) c*® -1 —=-1 2+ —|P 58

and each component Qfatt + At is

" =a1+cpQl, (59)
Nt _ (1+C + 2ﬁ3> Ql, (60)
Q3
7= (Q+CiQ+Cipl) = (1 +Cy + éﬁL ) Qj. (61)
3

Here,C; = —3(M] — 1)2c* At is negative ane, = (M — 1)2(2+ M{") At is positive
under the expansion shock condition of Eq. (55).

Now, for the initial values of positive mag€)}), momentum(Q3), energy(Q3), and
pressurd p™), one must find a time stept, which guarantees positive values(&f, p) at
t + At. From Eqgs. (59)-(61) an@;, C,, it can be observed that

e Q]*tis positive for

o Q5™ is always positive,
o Q3'tis positive for

(62)




56 KIM, KIM, AND RHO

After some algebra, it also can be seen for pressure-ait that

( n+l)2
n+l (y _ 1) QI’H-]. 0.5

Qn+1
2
(1+Cy) QG o5 C2(PD)
=(y-1 +Cipf —C 2L
e e R T
(1+Cy) c, B C?ﬂpﬂ(l+09}
-1 +C 0.5 63
- =D G R+l - R -0 ey | (69
1+Cy Q3 C7 Qf
=@y-1 [7+C -C 0.5—2 =31,
el Fvey Qo
Thus, as a sufficient condition to guarantee positive pressiirg att it is required that
(1+Cy) Q5 cs QS}
+C;—-C 05—= =
[W—D T T
2
1 1 2 1% (2 + ME)
= - (M=1 * "(2+ M) +05d", ——| At > 0.
- | L e vt w) vose, G
Since the term
2
1 2 Y " 2 + Mn
(ML —1) [(y ot ui (2+M7) +0-5e{',L<C*L) At
is always positive, one obtains
1
0< Atz < . vy . (64)
(v = D 3(M] = 1)° [0+ ul 2+ MD) + 0.5e], 7}
Therefore, the time stept for positive values of @1, p™*1) is given by
0< At < min{Atl, Aty, Ats}. (65)

Now, the velocity and total energy variation can be obtained from Egs. (59)-(61), a
Eq. (56) as

n
w1 o _ AEE DM@+ )R

ultt —up = e > 0, (66)
n
—At|z(= —1)c'pL
git-e = [5(c n+l) L <o (67)

PL

Notice that the velocity in front of the expansion shock increases as the time step evol
while the total energy decreases. Thus, the Mach number on the left side increases sir

n+1
u
L , (68)

Vo -1 (e —05u3)

M n+1
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and the entropy variation across the expansion shock is gradually decreased from Eq.
As" < AS" < 0. (69)

From Egs. (55) and (68), we have a monotonically increasing bounded seqihcend
it should converge to 1. Otherwise, there exists a positive nusndgeh that 1- 6 is a limit
of {M['}. Then, from Egs. (47) and (59)). = 1 — § andMg = 1/(1 — §), which produces
M greater than % § through the process of Egs. (54)—(68). This is a contradiction to tt
fact that 1— § is a limit of the monotonically increasing sequeri®é['}. As a result, we
haveM_ = Mg = 1, which means that the initial expansion shock profile is eliminated ¢
time step evolves by the action of the numerical dissipation, Eq. (43).

Numerical results for the entropy condition of AUSMPW+ will be presented i
Section 6.1.4.

4.1.4. Effect of the Speed of Sound to Numerical Dissipation

AUSM-type schemes are influenced considerably by the choice of the speed of so
at a cell interface. Capability of a shock capturing capability is critically dependent on t
choice of the speed of sound. Fuoi,» > 0, the numerical dissipation of convective terms
in AUSMPWH+ can be expressed as the functiof as

D=—%(UL@L+UR<I>R)+I\ZfC%<I>L+I\Z§c%<I>R. (70)
(i) ForM_ > 1andMg > 1(M{" = U, /c12 andMg = 0)
D= —%(URQR—U@L). (71)
(i) For M_ > 1and 0< Mg < 1 (M{f = UL /cy2 andMg = —0.25(Mg — 1)2)
1 1 2®PR

D= —E(URQR — UL‘PL) — Z(UR — C%)

5 (72)

(i) For 0 <M_ <1 and O< Mg <1 (M =0.25M_ + 1)? and Mg = —0.25
(Mg — 1)?)

Z(I)R 1 2‘I)|_
—+-(U —. 73
1 +4( L+C%) C1 (73)

2 2

1 1
D= _E(UL(I)L + Ur®R) — Z(UR - C%)

As shown in Eq. (71), the numerical dissipation in supersonic regions is not affected
the choice of the speed of sound. In the transition regions from supersonic to subsoni
in Eq. (72), the numerical dissipation term increases as the speed of sound increase
subsonic regions as in Eq. (73), it increases as the speed of sound increases in expa
regions(M_ < MR), and it decreases in compression regidds > Mg). Since the newly

defined speed of sound based on Eq. (30) is always smaller than that of Eq. (11), it |
provide more accurate numerical dissipation to capture a shock discontinuity. From
results of test cases presented in Section 6, it is noted that the actual improvemel
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significant when the angle difference between a cell interface and a shock discontinuit
small, though its effect may be reduced in case of a large angle difference.

In the boundary layer region, improvement is hardly noticeable since the portion of 1
numerical dissipation enhanced by the proper choice of the speed of sound is very s
compared to the order of the whole numerical dissipation.

4.2. Mechanism to Remove Numerical Oscillations

The fluxes of AUSM+ and AUSMPW+ at a cell interface are

F%.AUSM+ = (Mﬂﬁ:% + M§|ﬁ=%)c%<1>|_ + (PL+|a=1£6PL + PF;’a=1%PR)’ (74)
Fiausvpwe= (M{ + Mg x (L= w) - (1+ fr) — fL)C1 @1
+ (Mg xw-(1+ fR))C%QR‘F(PEPL"‘ Pk Pr), (75)

if my2 > 0. As mentioned earlier, the advection property of AUSM+ yields the oscillatior
near a wall and behind a shock in non-shock-aligned grids. It can be seen from Egs.
and (75) that AUSMPW+ is the scheme that controls the advection property by the funct
f andw without compromising the accuracy of AUSM+. Numerically, AUSM+ choose:
@, only, while AUSMPW+ consider®, and®r properly viaf andw. In a boundary
layer close to a wall, AUSMPW+ incorporates the effectbgf implicitly through function
fr.

The mechanism to remove oscillations can be explained quantitatively as follows: Ne:
wall, whereM_ g — 0,w — 0, M" — 1/4, Mg — —1/4, and®_ = ®g, the numerical
dissipation values of AUSM+ and AUSMPW+ become

D: ausm+ =0, (76)
1(pr— pL)C &
4 b

1
D%,AUSMPW+= _Z(fR - fL)C%@L = — o

Since the Mach number approaches zero asymptotically in this region, the numerical
sipation becomes zero for AUSM+ while it remain%(PRP‘SPL)cl/z{)L for AUSMPW+.
Thus pressure oscillations are damped out yntiequalspg in AUSMPW+. Additional
dissipation due td| g does not affect the accuracy siner becomes zero once oscilla-
tions are eliminated. A similar mechanism can be seen in Roe’s FDS and AUSMD wh
pressure wiggles do not appear. However, Roe’s FDS and AUSMD exhibit carbuncle p
nomena because of the numerical dissipation term proportional to the pressure differe
[18]. AUSMPW+ also has the possibility of instability due to this term. In AUSMPW+, the
numerical dissipation due to pressure difference is carefully controlled to eliminate press
wiggles without carbuncle phenomena, which is explained in detail in the next section.
In the region of shock waves whete — 1, AUSMPW+ explicitly considers, and
P with the same order of magnitude to remove oscillations. In the supersonic regif
the advection property of AUSM+ is compatible with the physical phenomena dominat
by the hyperbolic governing equations. In order to fully exploit this property, howeve
grid generation should reflect the position of physical discontinuities such as a sho
aligned grid system. Under these conditions, an accurate solution such as a shock wit
an intermediate cell can be captured. Otherwise the advection property of AUSM+ produ
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excessive or insufficient convective velocity, and as a result, AUSM+ shows oscillatio
On the other hand, AUSMPW+ not only maintains the advection property in a sho
aligned grid system but also removes oscillations in case of hon-shock-aligned grids
to Mrw (1 + fr)cy2®r of EQ. (75). It is essentially the same mechanisnMgr®r in
Van Leer’s FVS.

4.3. Preservation of the Total Enthalpy

In hypersonic flows, heat transfer at a wall is one of the primary quantities to be p
dicted accurately. If a numerical scheme does not guarantee the preservation of the
enthalpy, surface heating rate may be underpredicted since it is very sensitive to the
enthalpy. AUSMPW+, like AUSMPW and AUSM+, is designed to preserve the total e
thalpy in steady flows. From the mass conservation, AUSMPW+ satisfies the constanc
the total enthalpy in steady flows because the energy flux of AUSMPW+ can be writi
as

f3 = fiH, (77)
where f; is the mass flux.

4.4, Consistency

To solve the given governing equations correctly, the numerical scheme satisfies the
lowing condition. AsAt andAx approaches zero, properties of both cells are equal, and t
numerical flux vector should converge to the physical flux vector of the original governi
equations. IfAt, Ax — 0, then® = ®r andP, = Pgr. Thus the pressure ratio of both
cells are equal to unity, which giveg r = 0 andw = 0. Then, the split flux vector of
AUSMPWH+ converges to the physical flux vector as follows:

F

Mici®L + Mgy @ + (PP + PrPR)
= (M + Mg)c; @1 r + (P + PRPLR (78)
=U® +P.

1
2

4.5. Efficiency

Similar to AUSMPW or AUSM+, AUSMPW+ is based on the form of a scalar dis
sipation. In addition, thanks to the simplified form &f and interpolation functions,
AUSMPWH+is more efficient than AUSMPW, which is useful in the computation of nonequ
librium gas or three-dimensional flows. Table | shows the computational efficiency fol
calorically perfect gas. The difference between AUSMPW+ and AUSM+ is shown to |
negligible.

TABLE |
Comparison of Computational Time

Scheme AUSMPW+  AUSMPW  AUSM+  Roe’s FDS

Time/timQUSMpv\H 1.0 1.03 0.99 1.14
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4.6. Robustness and Shock Instability

In hypersonic flow computations involving strong shocks and high expansion regio
a robust numerical scheme is particularly desirable. In this respect, the FVS appro
is advantageous since some schemes of FVS are conservatively positive under a (
like condition [4]. For AUSM+, only the positivity condition for the mass continuity is
satisfied [10]. Since AUSMPW+ has almost the same form as AUSM+, except for t
region of oscillations, it satisfies the mass positivity condition, but the complete positivi
condition for AUSMPW+ has not yet been fully examined. However, various test cas
in Section 6 indicate that AUSMPW+ shows a better robustness than AUSM+ in mq
hypersonic problems.

In Ref. [18], it is conjectured that if the numerical dissipation term involving pressul
difference is not zero in the mass flux, a scheme may show even—odd decoupling
carbuncle phenomena. From this point of view, it is possible that AUSMPW+ may exhil
even—odd decoupling and carbuncle phenomena since AUSMPW+ possesses the num
dissipation term formed by the pressure difference.

In AUSMPW+, the numerical dissipation of mass flux is given by

) ) _
D1 = —2[(Mr— 2Mg)cy pr + (ML — 2M{)c3 1 |

1 _ _
= —E[(M§ — Mg)Cior + (M[ — Mf)c%pL]

+Mgw(d+ fr)C1(pr — pL) + Mg (fr — fL)C1pL, (79)

whenmgy,, > 0, and the term involving the pressure difference is

Dip) = My (M)C;pL

Ps

if f=(p/ps—1). Figure 4 shows the situation that induces even—odd decoupling a
carbuncle phenomena. For large convection veloa'ﬁ‘), isinsufficientto induce instability.
For small convection velocity such as in thelirection, however, it becomes enough to
trigger the instability.

i
|
Dir Dy Pap !
? 1
E 17 -direction
Pur Py Py
|
!
| & -direction

Moving shock discontinuity

FIG. 4. Pressure distribution around a moving shock discontinuity.
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By some external disturbances such as a grid disturbance, the instab[[if;’})bylagnifies
as shock strength increases. In order to remove this problem actively, it is necessary
the order of magnitude dDip) should be scaled down to the level where the instability i
easily damped out by numerical dissipation. This is achieved by augmenting the term
considers transversal pressure ratid tas

, 2
flp= (pL,R _ 1)min<1, mm(pl,Lj PR, P2.Ls Dz,R)) . (80)
Ps min(pL, Pr)

Extensive numerical tests indicate that Eq. (80) is sufficientto suppress even—odd decou
and carbuncle phenomena.

4.7. Extension to Reacting Gases

Like AUSM+, AUSMPW+ defines an advection Mach number and the speed of sound
cell interface with which convective fluxes are determined. Thus AUSMPW+ can be ea:
extended to reacting gases. This requires the addition of species densities or vibrati
energies of molecules to the flow vector

(P = (pa puv IOH7 1017 102,1 ey pSs ple\/ib,ls e pSe\/ib,S)T' (81)

For equilibrium and nonequilibrium gases, the speed of sound should take into accc
the effect of the species variation due to chemical reactions. Fhasy p/p is not valid
and is given by a variable specific heat ratio suclt’as: (5 — 1)e = 7 p/p. From the
conservation laws and equation of state, the speed of sound satisfying the Prandtl rel:
can be derived. The conservation laws across a normal shock are

Continuity equation:

pLUL = prUR,
Momentum equation:
pL + pLUZ = pr+ prUZ, (82)
Energy equation:
1 1
H. =h_ +§UE= hR—i-EU,%: Hg.

From the above shock relation equations, we can obtain

pL Pr ~ e ~ €er
UL prUz (L )UL (Yr )UR R L (83)
1 1 1
pref 4+ Zc? = Z)e? = Pe + U2, 84
yiet 5 ()7*_14-2) ne+ UL (84)
. 1., 1 1N ., - 1,
*e* 4+ —c* = — |c* = yRre ~Ug, 85
A <?*_1+2> VrER + 5 (85)

wherey’is variable specific heat ratio according to the gas reaction, and the superscri
stands for the critical state from the isoenergetic condition as in Eq. (11). Inserting Egs. (
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and (85) into Eq. (83), we obtain

( ! +1>C*z<<ﬂ—1>/fLuR—<&R—1>/&RuL)
pr—1" 2 ULUr

1 . ~ ~ ~
+§((VR_1)/VRUR_(VL_1)/VLUL)=UR_UL~ (86)
After definingcs as in Eq. (32) to satisfy the Prandtl relation
Cg = U_Ug, (87)

Cs is given as

7 +1> ((&L—1>/fLuR—<&R—1>/&RUL>>°‘5 .
G=c ((y*—l “\Ger/iUn— v /o)) -~ ©®

Equation (88) is consistent in the sense that it is identical to the critical speed of sol
(c" =[2(y — 1)/(y + 1 H]Y?) when the effect of reacting gas is neglected. In order t
capture the oblique shock exactly, Eq. (88) is reformulated as

c — <2H L —D/mUr— (R — 1)/7/RUL)

(Vr+1D/7rRUr — (7L + D /7LUL

L —=D/vpL — (PR — 1)/J/R,0R) 05
PR+ 1D/YroL — (VL + D /YR

= <2 Hnormal (89)

5. TEMPORAL INTEGRATION

The governing equations are discretized using the backward Euler formula as

+ AT 4 8FAT 15 B+—|—8+B} AQ =

RD 9E s oF  (0E, N aF, N\ 1"
i af 0& an i,j’

whereAQ"; = Q! — Q. A= 9E/9QandB = 9F /aQ.

The matrix on the left-hand side of Eq. (90) can be inverted approximately by the A
proximate Factorization Alternate Direction Implicit (AF-ADI) or Lower Upper Symmetric
Gauss Seidel (LU-SGS) scheme. The AF-ADI scheme is used for the calorically perf
gas and the equilibrium gas since the flux Jacobian can be obtained analytically; in
nonequilibrium gas, the LU-SGS scheme is adopted for the efficient calculation of the fl
Jacobian and matrix inversion:

AF-ADI:

[JAt R

(90)

| A
+ 4 st
[JMHgA 8EA} AQT =R,

|
+ +8 n
+5,B% +5; }AQ,J_JAtA .

{JAt
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LU-SGS:
LD'UAQY; = —RY;.
| I
L= s; At aB+ A" —-B~ —-C,
Jar T En T
| I
D=——+At+B*—A —B",
Jar T T
| .
U= —— +8A +5/B” — AT —B".
Jat T *
Here
+ 1. H A
= E(A + x| max(eigenvaluéAd))|),
andC = 39S/4Q.

6. NUMERICAL RESULTS OF AUSMPW+

To validate the analysis carried out in Section 4, various numerical computations
performed. The test problems include shock discontinuities, contact discontinuities, sh
wave/boundary layer interaction, compressible boundary layer flows, and hypersonic
acting gas flows. Test cases for a calorically perfect gas are presented in Sections 6.1
Results for equilibrium and nonequilibrium gases are given in Section 6.6.

For boundary conditions, free-stream values are specified as inflow conditions,
extrapolation from the inner computational domain is used for outflow conditions. At
wall, a no-slip condition is specified for velocity, and an adiabatic or constant conditi
is used for wall temperature. For the nonequilibrium gas, the wall is assumed to be fi
catalytic.

6.1. Shock Discontinuities
6.1.1. Stationary Normal Shock

For the normal shock condition with a Mach number of 3, initial conditions are given t
(p, u, pL=(1, 3, 0719 and(p, u, p)r = (3.857, 0.778 7.381). CFL is 1.0 and all
results are converged to the machine accuracy zero. As shown in Fig. 5, AUSMPW+
AUSMPW capture the normal shock with one cell interface only. AUSM+ and Roe’s FC
also satisfy this property. As proved in Section 4, the functibrendw are not active in
shock-aligned grids.

6.1.2. Stationary Oblique Shock

Initial conditions are(p, u, v, p)L = (1, 1.5, 2598 0.714 and (o, U, v, pP)r =
(1.862 0.806, 2.598 1.756), which produces an oblique shock with a 30 degree shoc
angle and the Mach number of 3. CFL is 1.0 and all results are converged to the mac
accuracy zero. Figures 6 to 8 show the comparison of pressure distributions with tt
speeds of sound. Case 1 is the speed of sound in Eq. (11) used in AUSM+ and AUSM
case 2 is the newly defined speed of sound in Eq. (30), and case 3 is the speed of sou



64 KIM, KIM, AND RHO

12

10— T""""""""""”"""

Normal shock discontinuity

[«}] -
'5 —<&—— Roe's FDS
0 6 —H&— AUSM+
3 —O6— AUSMPW
a_- | —@— AUSMPW+
4 —
2

0 0.2 0.4 0.6 0.8 1
X

FIG.5. Pressure distribution of a normal shock.

Eq. (89) for equilibrium flow. Figure 6 shows the accuracy comparison of each scheme v
the same speed of sound. Calculation of the discontinuity by AUSMPW+ is more accur
than the other schemes in Fig. 6 since Mach number and pressure splitting function
AUSMPW+ are less diffusive than the other schemes. Figure 7 shows that AUSMPW+
case 2 can capture the oblique shock in one cell interface while AUSM+ and AUSMP
produce more than three interior cells in the shock transition layer. Figure 8 shows t
AUSMPW+ of case 3 successfully captures the oblique shock through a one cell interf
even in an equilibrium reacting gas flow. As in the previous test case, the fundtiand

w are not active in shock-aligned grids.

6.1.3. Moving Normal Shock

The problem of a shock wave propagating through a two-dimensional duct is chosento
amine carbuncle phenomena. Centerline grids are perturbed according to Ref. [6]. Thein
conditions arép, u, v, p)L = (1, 6, 0, 1) and(p, u, v, p)r = (5.25, 0.353 0, 40.64)
to produce a normal shock propagated with a Mach number of 6. CFL is 1.0 and the itera
count is 2000. As in Fig. 9, AUSMPW+, AUSMPW, and AUSM+ do not show carbuncl
phenomena.

6.1.4. Expansion Shock

The initial conditions are given byp, u, p). = (1, —3, 0.714) and (p, u, p)r =
(3.857, —0.778 7.381) for an expansion shock condition with a Mach number of 3. CFL
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FIG. 9. Moving normal shock with the Mach number of 6.
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is 1.0 and all results are converged to the machine accuracy zero. As can be seen in Fi
Roe’s FDS without an entropy fix, AUSM+, and AUSMPW admit a physically unaccep
able discontinuity. On the other hand, AUSMPW+ with the newly proposed speed of sol
eliminates it.

6.2. Contact Discontinuities

6.2.1. Stationary Contact Discontinuity

The initial conditions ardp, u, p). = (1, 0, 1) and (p, u, p)r = (10, 0, 1) with a
CFL number of 1.0. All results are converged to the machine accuracy zero. As in Fig.
AUSMPWH+ yields a very satisfactory result because the mass flux disappears as the M
number goes to zero, like AUSM+, AUSMPW, or Roe’s FDS. It also confirms thetd
w do not compromise accuracy.

6.2.2. Moving Contact Discontinuity

The initial conditions are (p, u, p). = (0.125 0.1125 1) and (p, U, p)r =
(10, 0.1125 1) with a CFL number of 0.7. The iteration count is 500 and the numbe
of grid points is 100. AUSMPW+, AUSMPW, and AUSM+ adopted the speed of sour
given in Eqg. (11). AUSMPW+ and Roe’s FDS without an entropy fix give almost the sar
results as shown in Fig. 12 but large oscillations in velocity profile can be observed
the case of AUSM+, indicating that the functidnin AUSMPWH+ plays a crucial role in
damping out the oscillations. However, when CFL number becomes 1, both AUSMP\
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FIG. 11. Density distribution of a stationary contact discontinuity.

and AUSMPVW, in contrast to Roe’s FDS, show velocity oscillations. In view of stability
the numerical dissipation by the convective term in the slowly moving contact discontinu
problem is so small that the numerical dissipation due to the pressure splitting function
comes important. When convective velocity is large, however, there is no problem in solv
this test case. Thus, AUSM-type schemes with a pressure splitting function in Eq. (10) s
to be insufficient to prevent oscillations.dfbecomes 0, the pressure splitting function is
almost the same as that of Roe’s FDS, and AUSM-type schemes also show the same
of robustness as Roe’s FDS.

6.3. Hypersonic Inviscid Flow around a Cylinder
The free-stream conditions are

o calorically perfect gas,
e M, = 100.

The conditions for the computation are

e time integration: CFl= 1.0, LU-SGS,

e spatial discretization : AUSMPW+, AUSM+; the number of grid poirt®394 nodes
(see Fig. 13),

e boundary condition: slip condition.

To check the sensitivity of a scheme to grid topology, an unstructured mesh is us
As in Fig. 14, AUSM+ yields noticeable oscillations near the stagnation region while tl
oscillatory behavior is effectively eliminated in AUSMPW+ by the pressure-based weig
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FIG. 12. Pressure, density, and velocity distributions of a slowly moving contact discontinuity.

function w. This can be seen more clearly in Fig. 15, which shows the distribution
surface pressure coefficients for AUSM+ and AUSMPW+. In AUSM+, the overshoot
the stagnation region and asymmetric pressure distribution in the expansion region
be observed. The error due to oscillations around the normal shock and stagnation re
is propagated along the flow and produces the asymmetric pressure distribution in
expansion region. Figure 16 indicates that the oscillatory behavior also produces an ad\
effect in convergence behavior.

6.4. Shock Wave/Laminar Boundary Layer Interaction
The free-stream conditions are

calorically perfect gas,
Mo = 2.0,

Re= 2.96 x 10°,
Pr=0.72,

Gimpinging shock anglé= 32.585.

The conditions for the computation are

e time integration: CFL= 3.0, AF-ADI,

e spatial discretization : AUSMPW+, AUSM+, Roe FDS; third-order MUSCL without
limiter (« = 1/3); the number of grid point 55 x 60 (see Fig. 17),

e boundary condition : adiabatic wall condition.
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FIG. 13. Unstructured grids around a cylinder.

Figure 18 shows that the skin friction coefficient of AUSMPWH+ is in a good agreeme
with other numerical results and experimental data, indicating the capability of AUSMPV
to compute viscous flows involving shock waves. It is also noticed thahd w do not
compromise accuracy in viscous calculations compared with results of AUSM+ and Ra

FIG. 14. Comparison of pressure contours.
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71

FDS. Figure 19 shows the convergent behavior of AUSMPW+, AUSM+, and Roe’s FD
The error history of AUSMPW+ is similar to those of AUSM+ or Roe’s FDS. Althougt
numerical oscillations near a wall are also observed for AUSM+, it does not interfere w
convergence characteristics since shock strength is relatively weak.
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16. Convergence history of the cylinder problem.
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FIG. 17. Grid system for the shock wave/boundary layer interaction problem. The number of grid $oints
55 x 60.

6.5. Boundary Layer over a Flat Plate

The free-stream conditions for a laminar boundary layer over a flat plate are

e calorically perfect gas,
e My =0.2,
e Re=10x 10°.

The conditions for the computation are

e time integration: CFL= 1.0, AF-ADI,

3.0E-3
] Skin Friction Coeff.
—@— AUSMPW+
. 2.0E-3 —O— AUsm+
% —&— Roe's FDS
] i @  Experimental data
(&)
=
O
= 1.0E-3 -
O
=
m -
£
*
0.0E+0 —
-1.0E-3 : : : : — :
0.00 0.40 0.80 1.20 1.60
x/L

FIG. 18. Skin friction coefficient of the shock wave/boundary layer interaction problem.
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FIG. 19. Convergence history of the shock wave/boundary layer interaction problem.

e spatial discretization: AUSMPW+, AUSM+, and Roe’s FDS; third-order MUSCL
without limiter (¢« = 1/3); the number of grid point 128 x 64 (see Fig. 20),
e boundary condition : adiabatic wall condition.

Figures 21 and 22 show comparison of the velocity profiles of each scheme with
Blasius solutions. According to Ref. [19], 32 cells are equally distributed inside the bound
layer. Like AUSM+ and Roe’s FDS, AUSMPWH+ yields an excellent agreement with the
andv profiles of the Blasius solution. It confirms again tHaandw do not compromise
accuracy. Figure 23 shows the error histories of AUSMPW+, AUSM+, and Roe’s FD
confirming again the convergence characteristics of AUSMPW+.

6.6. Equilibrium and Nonequilibrium Flows around a Cylinder

The free-stream conditions are

e equilibrium and nonequilibrium gas,
e My =15,

e Po = 66341 N/n?,

o Do = 9.8874x 10~ 3kg/m?®,

o o = 1514x 107 5kg/m- &,

o T, =23375K,

e Tyan = 11687K,

e Re=20x 10°.

The conditions for the computation are
e time integration: CFL= 0.5, LU-SGS,
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FIG. 20. Grid system for the flat plate. The number of grid poirt428 x 64.
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FIG. 24. Grid system for the blunt wedge.

e spatial discretization : AUSMPW+, AUSM+; third-order MUSCL with minmod limiter

(B = 1,k = 1/3); the number of grid point= 80 x 55 (see Fig. 24),

e boundary condition: constant temperature wall (fully catalytic wall).

Figures 25 to 29 are the results of AUSMPW+ and AUSM+ applied to equilibrium ar
nonequilibrium flows. The result of nonequilibrium flow is obtained by the four-temperatu

Pressure contour (AUSM+)

Pressure contour (AUSMPW+)

FIG. 25. Comparison of pressure distributions (AUSMRWAUSM+) around an equilibrium blunt wedge.
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FIG. 26. Convergence history of the equilibrium blunt-wedge problem.

model. Although the two-temperature model is sufficient to obtain accurate results in m
hypersonic flow problems, the four-temperature model is adopted in the present work to
the robustness of AUSMPW+in nonequilibrium flows. Since structured grids are much mi
aligned than unstructured grids, the oscillatory phenomena of AUSM+ are substanti

Pressure contour (AUSMPW+) Pressure contour (AUSM+)

pod

(I
\\\\\\L

FIG.27. Comparison of pressure distributions (AUSMRWAUSM-+) around a nonequilibrium blunt wedge.
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reduced, compared to the results in Section 6.3. Oscillations around the shock or a \
however, are still observed, whereas AUSMPW+ does not exhibit such behavior as in
case of unstructured grids. Unlike the case of equilibrium flow, the result of AUSM+
nonequilibrium flow shows no oscillation around the shock. This can be explained by the
of the source term in the nonequilibrium gas. As can be seen in Figs. 28 and 29, the so
term is active to damp out oscillations in the transition region between the frozen and e
librium states. Figure 26 confirms again a good convergence characteristic of AUSMPV
Figure 28 shows the mole fraction distribution of each species along the stagnation stre
line. It can be seen that oxygen is almost dissociated, and AUSMPW+ calculates a hic
dissociated flow without any difficulty. Figure 29 presents the temperature distributions
each species along the stagnation streamline.

7. CONCLUSIONS

As arobust, accurate, and efficient numerical flux function to compute hypersonic flo\
the AUSMPW+ scheme is proposed. The AUSMPW+ scheme, an improved version
AUSMPVW, is designed to enhance the accuracy and computational efficiency in cap
ing oblique shock and to eliminate physically unacceptable expansion shocks. Althol
AUSM+ is excellent in many respects, it shows overshoots or oscillations behind sho
and near a wall. AUSMPW+ uses weighting functions based on pressure to reflect t
properties of a cell interface. Exploiting these functions properly, AUSMPW+ successfu
eliminates oscillations and overshoots without compromising accuracy and computatic
efficiency. In addition, grid dependency is reduced and convergence behavior is impro

With the newly defined numerical speed of sound satisfying the stationary oblique sh
equations, AUSMPWH+ is able to capture a stationary oblique shock in one cell interf:
in shock-aligned grids. In non-shock-aligned grids, the newly proposed speed of so
and Mach number and pressure splitting functions of AUSMPW+ avoid extra numeri
dissipation to yield more accurate results. Numerous computations from supersonic frc
flows to hypersonic nonequilibrium flows confirm the characteristics of AUSMPW+,
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